A Change-Detection based Framework for Piecewise-stationary Multi-Armed Bandit Problem Fang Liu, Joohyun Lee and Ness Shroff

- Multi-Armed Bandits = Slot Machines with Unknown Rewards
 - Example: Ad selection problem of a social media

If P_i s are **stationary**, bandit algorithms achieve $O(\log(T))$ regret

Change Detection based Approach for Non-stationary Bandit

- In real-life problems, reward distributions are non-stationary
- Non-stationary Multi-Armed Bandit Problem
 - Developed a Change Detection Algorithm based on CUSUM (CUmulative SUM)
 - Developed CUSUM-UCB (Upper Confidence Bound) with the best known regret bound
 - Evaluated over Big Data (Yahoo click-through rates)

 γ_T = number of changes up to time T

	Change
	detection
	algorithm
ce //	"alarms" to restart
d (Bandit algorithm
reward \	arm
$X_t(I_t)$	Non-stationary I_t
	bandit
T	environment

	Passively adaptive			Activel <u>y</u> adaptive		
Policy	D-UCB	SW-UCB	Rexp3	Adapt-EvE	CUSUM-UCB	lower bound
	(Kocsis and Szepesvári 2006)	(Garivier and Moulines 2008)	(Besbes, Gur, and Zeevi 2014)	(Hartland et al. 2007)	A	(Garivier and Moulines 2008)
Regret	$O(\sqrt{T\gamma_T}\log T)$	$O(\sqrt{T\gamma_T \log T})$	$O(V_T^{1/3}T^{2/3})$	Unknown	$O(\sqrt{T\gamma_T \log \frac{T}{\gamma_T}})$	$\Omega(\sqrt{T})$

- Generally applicable to many sequential learning problems
 - E.g., Choose a song/channel depending on the moods/situations (Users will give feedbacks)
 - E.g., Choose an angle (control) of drones for a specific mission