

An Online Learning Approach to Networking Problems

Fang Liu¹

Joint work with Yin Sun², Sinong Wang¹, Zizhan Zheng³, Joohyun Lee⁴, Swapna Buccapatnam⁵, Atilla Eryilmaz¹ and Ness Shroff¹

¹The Ohio State University, ²Auburn University, ³Tulane University, ⁴Hanyang University, ⁵AT&T Labs Research

Outline

- Multi-Armed Bandits Framework
 - ☐ Stochastic Bandits At a Glance
- Motivations/Applications to Networking Problems
 - ☐ Stochastic Routing Problem
 - ☐ Real-time Control Problem
 - ☐ Edge Computing
 - ☐ Task Scheduling Problem
- Variants of Bandits
 - ☐ Graphical Bandits
 - ☐ Boosting Bandits
 - Non-stationary Bandits
 - ☐ Parameterized Clustering Bandits
- Conclusion

Multi-Armed Bandits Framework

Repeated game between an agent and an environment

Stochastic Bandits At a Glance

- Model
 - At each (discrete) time t, the agent plays action A_t from a set of K actions
 - The agent receives reward $Y_{A_t,t}$, drawn from unknown distribution A_t
- Performance measure

■ Regret(loss)
$$R(T) = \mathbb{E}\left[\max_{i \in [K]} \sum_{t=1}^{T} Y_{i,t} - \sum_{t=1}^{T} Y_{A_t,t}\right]$$

- Minimize regret = maximize total reward
- Regret lower bounds
 - Problem-dependent:
 - Problem-independent:

$$\Omega\left(\sum_{i} rac{\mu^* - \mu_i}{KL(\mu_a, \mu^*)} \log T
ight)$$
 where μ_i is expected reward $\Omega\left(\sqrt{KT}\right)$

- Popular algorithms
 - Upper Confidence Bounds (UCB), Thompson Sampling, epsilon-greedy

- Stochastic Routing Problem
 - Action => routing path
 - Observation => random delay (link delay or end-to-end delay)
 - Reward => minus delay (or 1/delay, etc)
 - Statistics of delay is uknown

Playing one action (partially) observes the outcome if playing others

Reduce dependence on K

- Real-time Control Problem
 - Action => control
 - Reward => train the learner in reinforcement learning way
 - Real-time
- Example
 - Network function virtualization
 - Want no delay due to control at each node
 - Security monitors with tracking ability
 - Want no tracking failure due to slow decision
 - Physical layer channel selection
 - Want to select within coherence time

Time-sensitive applications require the algorithm to respond quickly

Complexity vs Optimality

Boosting Bandits

- Edge Computing
 - Make decisions on devices in the fog
 - Learning user pattern
- Example
 - Smartphone application management
 - Want to close background applications
 - Save energy without painful cold start
 - Update for perishable mobile content
 - Want to pull the latest content
 - Keep data fresh without draining energy
 - IoT services
 - Want to suggest services actively
 - Understand the master

User preference or pattern may change over time

Adaptive to changing env.

Non-stationary Bandits

- Task Scheduling Problem
 - Make replications to be robust to straggling servers
 - Action => replication number
 - Reward => (minus) minimum service time
 - Servers with unknown service time distribution

The outcome of playing one action implies some information about others

Handle correlations

Parameterized Clustering Bandits

- What is graphical bandits?
 - A graph G over the actions, possibly known (or unknown) to the agent
 - An arc (i,j) means playing action i also observes one outcome of action j
- Graph theory review
 - Clique cover number $\chi(G)$
 - Independence number $\beta_0(G)$
 - Domination number $\gamma(G)$
- Recap of stochastic bandits
 - Curse of dimensionality $O(K \log T)$ or $O(\sqrt{KT})$
- Why graphical bandits?
 - Reduce dependence on K to graph numbers

Literature review

■ Proposed in adversarial bandits by Shie Mannor et. al. [MS2011] $\beta_0(G)$ ■ UCB-N, introduced to stochastic bandits by S. Caron et. al. [CKLB2012] $\chi(G)$ ■ UCB-LP, epsilon-greedy-LP, improved by Swapna et. al. [BES2014] $\gamma(G)$ ■ Generalized to bi-partite graph by Swapna et. al. [1] $\gamma(G)$ ■ Without graph information, studied by Cohen et. al. [CHK2016] $\beta_0(G)$ ■ TS-N, evaluated by Tossou et. al. [TDD2017] $\chi(G)$ ■ IDS-N, proposed by Liu et. al. [2]

 $\beta_0(G)$

[1] Swapna Buccapatnam, Fang Liu, Atilla Eryilmaz and Ness Shroff, "Reward maximization under uncertainty: Leveraging side-observations on networks", accepted by JMLR.

■ TS-N, improved analysis for TS-N and IDS-N by Liu et. al. [3]

- [2] Fang Liu, Swapna Buccapatnam and Ness Shroff, "Information directed sampling for stochastic bandits with graph feedback", AAAI 2018.
- [3] Fang Liu, Zizhan Zheng and Ness Shroff, "Analysis of Thompson Sampling for Graphical Bandits Without the Graphs", UAI 2018.

- Time-invariant bipartite graph setting
 - Known graph structure (otherwise, play each action once)
 - Action base-arm bipartite graph: model stochastic routing problem
 - Action => routing path
 - Base-arm => link
- UCB-LP/epsilon-greedy-LP algorithms
 - Dominating set (hitting set)
 - Explore on dominating set
 - LP relaxation of dominating set
 - Regret $O(\gamma(G) \log T)$

- Numerical Results
 - Stochastic routing example
 - Reduce at least 75% regret of the state of the art

- Time-variant graph setting
 - Unknown graph structure
 - Worst case: graph is generated by opponent. Never able to learn the graph
 - However, free side observations improves the learning performance.
- TS-N algorithm
 - Update posterior with all observations
 - Sampling $\pi_t = \alpha_t$ where α_t is the posterior over actions that is optimal
 - Problem-independent regret $O(\sqrt{\beta_0(G)T\log K})$ if graph is undirected
- TS-U algorithm
 - Sampling $\pi_t = (1 \epsilon_t)\alpha_t + \epsilon_t \frac{1}{K}$
 - Mixing with uniform distribution allows exploring the graph
 - Problem-independent regret $\tilde{O}(\sqrt{\beta_0(G)T\log K})$ if graph is directed

- Numerical Results
 - Bernoulli case in undirected graphs
 - Time-invariant case (left) and time-variant case (right)

- Numerical Results
 - Bernoulli case in directed graphs
 - Time-invariant case (left) and time-variant case (right)

- Time-variant graph setting (cont.)
 - What if the graph is known each time?
- Information Directed Sampling
 - Update posterior with all observations

■ Sampling actions according to
$$\underset{\pi_t}{\arg\min} \frac{(\pi_t^T \Delta_t)^2}{\pi_t^T G_t h_t}$$
, that min. information ratio

- where G_t is graph information, Δ_t is expected regret, h_t is information gain.
- IDS-N Enjoys same regret bound as TS-N, and better empirical performance.
- Can be generalized to (Erdos-Renyi) random graph feedback
- Relax the optimization problem => variants of IDS
- However, more computation cost than TS-N.

- Numerical Results
 - Bernoulli case
 - Time-invariant case (left) and time-variant case (right)

- Complexity vs Optimality Dilemma
 - Optimal algorithms involve optimization problems: kl-UCB
 - Simple algorithms are far from being optimal: UCB1
- UCBoost algorithms [4]
 - Ensemble a set of "weak" but closedform UCB-type algorithms
 - Offer trade-off between complexity and optimality with guarantees

	kl-UCB	$UCBoost(\epsilon)$	UCBoost(D)	UCB1	
Regret/ $\log(T)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*)}\right)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*) - \epsilon}\right)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*) - 1/e}\right)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{2(\mu^* - \mu_a)^2}\right)$	
Complexity	unbounded	$O(\log(1/\epsilon))$	O(1)	O(1)	

[4] Fang Liu, Sinong Wang, Swapna Buccapatnam and Ness Shroff, "UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits", in IJCAI 2018.

- Understanding UCBoost
 - UCB kernel is a distance function d, associated with $P(d) : \max_{q \in \Theta} q$

o kl-UCB:
$$d_{kl}(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$$

$$P(d): \max_{q \in \Theta} \ q$$

$$s.t. \ d(p,q) \le \delta$$

$$0 \text{ UCB1: } d_{sq}(p,q) = 2(p-q)^2$$

- UCBoost ensembles a set D of distance functions (UCB-types algorithms) by taking the minimum
- For each d in D, P(d) has closed-form solutions.
- UCBoost(D)
 - Ensemble a fixed (finite) set of distance functions
- UCBoost(ϵ)
 - Ensemble an infinite set of step functions + one distance function
 - Bisection search

- Why taking the minimum?
- Philosophy of voting
 - Majority vote? No!
 - If the ordering is known, follow the leader.
 - UCBoost takes the minimum, thus the tightest upper confidence bound.
- Geometric view of UCBoost
 - Kernel of UCBoost is $\max_{d \in D} d$
 - Taking the minimum = solving $P\left(\max_{d \in D} d\right)$
 - The closer to KL divergence, the better regret

Value of q

• Numerical Results

Computational Costs per arm per round

Scenario	kl-UCB	$ UCBoost(\epsilon) $ $ \epsilon = 0.01(0.001) $	$UCBoost(\epsilon)$ $\epsilon = 0.05(0.005)$	$\begin{array}{c} \text{UCBoost}(\epsilon) \\ \epsilon = 0.08 \end{array}$		UCB1
Bernoulli 1	$933\mu s$	$7.67\mu s$	$6.67 \mu s$	$5.78\mu s$	$1.67 \mu s$	$0.31\mu s$
Bernoulli 2	$986\mu s$	$8.76\mu s$	$7.96\mu s$	$6.27\mu s$	$1.60\mu s$	$0.30\mu s$
Beta	$907\mu s$	$8.33 \mu s$	$6.89 \mu s$	$5.89 \mu s$	$2.01 \mu s$	$0.33\mu s$

- 1% computation cost of kl-UCB to achieve competitive regret
- UCBoost(D) outperforms UCB1

- What is non-stationary bandits?
 - The distributions associated with actions may change over time
 - Unknown change points
 - Model varying user preference
- Existing recipes in stochastic domain
 - Discounting: D-UCB [GM2011]
 - Sliding window: SW-UCB [GM2011]
 - Passively adaptive
- Change-detection based framework [5]
 - CD-UCB: UCB with any CD algorithm
 - CUSUM-UCB: Cumulative Sum as CD
 - Actively adaptive

[5] Fang Liu, Joohyun Lee and Ness Shroff, "A Change-Detection based Framework for Piecewise-stationary Multi-Armed Bandit Problem", in AAAI 2018.

- Change-detection based framework
 - CD-UCB: develop a general UCB algorithm with any CD element
 - CUSUM-UCB: develop a modified Cumulative Sum as CD element
 - CUSUM-UCB enjoys the best known regret bound

 γ_T = number of changes up to time T

	Passively adaptive			Actively adaptive		
Policy	D-UCB	SW-UCB	Rexp3	Adapt-EvÈ	CUSUM-UCB	lower bound
1 oney	(Kocsis and Szepesvári 2006)	(Garivier and Moulines 2008)	(Besbes, Gur, and Zeevi 2014)	(Hartland et al. 2007)		(Garivier and Moulines 2008)
Regret	$O(\sqrt{T\gamma_T}\log T)$	$O(\sqrt{T\gamma_T \log T})$	$O(V_T^{1/3}T^{2/3})$	Unknown	$O(\sqrt{T\gamma_T\log\frac{T}{\gamma_T}})$	$\Omega(\sqrt{T})$

- Numerical Results
 - Flipping environment: 2 Bernoulli arms, $\mu_t(1) = 0.5$, $\mu_t(2) = \begin{cases} 0.5 \Delta, & \frac{T}{3} \le t \le \frac{2T}{3} \\ 0.8, & \text{otherwise} \end{cases}$.
 - Switching environment: $\mu_t(i) = \begin{cases} \mu_{t-1}(i), & \text{with probability } 1 \beta(t) \\ \mu \sim U[0,1], & \text{with probability } \beta(t) \end{cases}$

Flipping environment

Switching environment

- Numerical Results
 - Yahoo! Front Page dataset

Yahoo! ground truth

Yahoo! regret result

Parameterized Clustering Bandits

- Paper in preparation
- General idea:
 - Model correlations by clusters of actions
 - Goal 1: show lower bound result depends on number of clusters
 - Design algorithm that can aggregate the observations in each cluster
 - This involves joint maximum likelihood estimation
 - Goal 2: show upper bound result depends on number of clusters
- Why interesting?
 - # of clusters << # of actions</p>
 - Task scheduling problem: regret depends on "types" of servers

Reference

[MS2011] Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-observations. In NIPS, pages 684–692, 2011.

[CKLB2012] S. Caron, B. Kveton, M. Lelarge, and S. Bhagat. Leveraging side observations in stochastic bandits. In UAI, pages 142–151. AUAI Press, 2012.

[BES2014] Swapna Buccapatnam, Atilla Eryilmaz, and Ness B. Shroff. Stochastic bandits with side observations on networks. SIGMETRICS Perform. Eval. Rev., 42(1):289–300, June 2014.

[CHK2016] Alon Cohen, Tamir Hazan, and Tomer Koren. Online learning with feedback graphs without the graphs. ICML 2016.

[TDD2017] Aristide Tossou, Christos Dimitrakakis, and Devdatt Dubhashi. Thompson sampling for stochastic bandits with graph feedback. In AAAI Conference on Artificial Intelligence, 2017.

[GM2008] Garivier, A., and Moulines, E. On upper-confidence bound policies for switching bandit problems. ALT 2011.