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e Multi-Armed Bandits Framework
Stochastic Bandits At a Glance
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(JReal-time Control Problem
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* Variants of Bandits
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(dBoosting Bandits
(Non-stationary Bandits
dParameterized Clustering Bandits

* Conclusion



* Repeated game between an agent and an environment

-

environment agent

QWV

Reinforcement learning

MAB

Online learning




* Model

= At each (discrete) time t, the agent plays action A, from a set of K actions
* The agent receives reward Ya,.:, drawn from unknown distribution A,

* Performance measure
» Regret(loss) Rr(1)=E

T T
elKl i t=1

" Minimize regret = maximize total reward

* Regret lower bounds o
= Problem-dependent: <Z K L(jtq, jt*) 10gT> where #i is expected reward
" Problem-independent: (W)

* Popular algorithms
= Upper Confidence Bounds (UCB), Thompson Sampling, epsilon-greedy



 Stochastic Routing Problem
= Action => routing path
= Observation => random delay (link delay or end-to-end delay)
= Reward => minus delay (or 1/delay, etc)
= Statistics of delay is uknown

* Example 2 4
: (Playing one action (partially)\

observes the outcome if
9 playing others y

[ Graphical Bandits ]




* Real-time Control Problem
= Action => control

= Reward => train the learner in reinforcement learning way

= Real-time
* Example - N
» Network function virtualization Time-sensitive applications
o Want no delay due to control at each node require the algorithm to
= Security monitors with tracking ability 9 respond quickly y

o Want no tracking failure due to slow decision

« hysical ayer channel selection (LLLCOMPIEXIYNS OpUMAlItY )

o Want to select within coherence time [

Boosting Bandits

J




* Edge Computing
= Make decisions on devices in the fog
= | earning user pattern

* Example

= Smartphone application management
o Want to close background applications
o Save energy without painful cold start
= Update for perishable mobile content
o Want to pull the latest content
o Keep data fresh without draining energy
= |oT services

o Want to suggest services actively
o Understand the master

-

\_

User preference or pattern
may change over time

\

J

[

Non-stationary Bandits

J




* Task Scheduling Problem
= Make replications to be robust to straggling servers
= Action => replication number
= Reward => (minus) minimum service time
= Servers with unknown service time distribution

* Example

Jobt

Replication
Scheduling

action implies some

( The outcome of playing one

_information about others

~

( servers |

[ Parameterized Clustering Bandits ]




 What is graphical bandits?
= A graph G over the actions, possibly known (or unknown) to the agent
= An arc (i,j) means playing action i also observes one outcome of action |

* Graph theory review
» Clique cover number x(G)
" Independence number 5o(G)
* Domination number ~(G)

e Recap of stochastic bandits
= Curse of dimensionality O(KlogT) or O(VKT)

 Why graphical bandits?

= Reduce dependence on K to graph numbers



e Literature review

" Proposed in adversarial bandits by Shie Mannor et. al. [MS2011] Bo(G)
= UCB-N, introduced to stochastic bandits by S. Caron et. al. [CKLB2012]  x(G)
= UCB-LP, epsilon-greedy-LP, improved by Swapna et. al. [BES2014] Y(G)
= Generalized to bi-partite graph by Swapna et. al. [1] 1(G)
= Without graph information, studied by Cohen et. al. [CHK2016] Bo(G)
= TS-N, evaluated by Tossou et. al. [TDD2017] X(G)
= |DS-N, proposed by Liu et. al. [2] X(G)
= TS-N, improved analysis for TS-N and IDS-N by Liu et. al. [3] Bo(G)

[1] Swapna Buccapatnam, Fang Liu, Atilla Eryilmaz and Ness Shroff, “Reward maximization under
uncertainty: Leveraging side-observations on networks”, accepted by JMLR.

[2] Fang Liu, Swapna Buccapatnam and Ness Shroff, “Information directed sampling for stochastic
bandits with graph feedback”, AAAI 2018.

[3] Fang Liu, Zizhan Zheng and Ness Shroff, “Analysis of Thompson Sampling for Graphical Bandits
Without the Graphs”, UAI 2018.



* Time-invariant bipartite graph setting
= Known graph structure (otherwise, play each action once)
= Action base-arm bipartite graph: model stochastic routing problem

= Action => routing path

= Base-arm => link Actions Base-arms
- — o [ X(t)

* UCB-LP/epsilon-greedy-LP algorithms \/

= Dominating set (hitting set) min Yz O\Q T (Y

= Explore on dominating set JElK] /\

» LP relaxation of dominating set| 5t > % > 1,¥i € [N] (D SR

JES;
=|Regret O(v(G)logT) 2 >0,V € [K] Cm> m




* Numerical Results
= Stochastic routing example

= Reduce at least 75% regret
of the state of the art

Expected Regret
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* Time-variant graph setting
= Unknown graph structure
= Worst case: graph is generated by opponent. Never able to learn the graph
= However, free side observations improves the learning performance.

* TS-N algorithm
= Update posterior with all observations
= Sampling 7 = a; where & is the posterior over actions that is optimal

= |Problem-independent regret O(\/5o(G)Tlog K) if graph is undirected

e TS-U algorithm .
= Sampling ™ = (1 — &)y + €t 77
= Mixing with uniform distribution allows exploring the graph

" |Problem-independent regret O(\/5o(G)Tlog K) if graph is directed




 Numerical Results
= Bernoulli case in undirected graphs
* Time-invariant case (left) and time-variant case (right)
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 Numerical Results
= Bernoulli case in directed graphs
* Time-invariant case (left) and time-variant case (right)
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* Time-variant graph setting (cont.)
= What if the graph is known each time?

* Information Directed Sampling
= Update posterior with all observations
= Sampling actions according to

T A \2 L : :

: (Wt Ay) , that min. information ratio
AT TNIN —
= where G:is graph information, A: is expected regret,: is information gain.
= |IDS-N Enjoys same regret bound as TS-N, and better empirical performance.
= Can be generalized to (Erdos-Renyi) random graph feedback
= Relax the optimization problem => variants of IDS
=" However, more computation cost than TS-N.




 Numerical Results
= Bernoulli case
* Time-invariant case (left) and time-variant case (right)
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* Complexity vs Optimality Dilemma

" Optimal algorithms involve optimization kI-UCB
problems: kl-UCB > Boosting!
= Simple algorithms are far from being 'c%
optimal: UCB1 ‘% UCBoost(€)
* UCBoost algorithms [4] S
= Ensemble a set of “weak” but closed- UCBoost(D)
form UCB-type algorithms ® UCBI
= Offer trade-off between complexity and ) , g
optimality with guarantees Gap to optimality
kl1-UCB UCBoost(¢) UCBoost(D) UCBI1
Regretton(T) | O (5 g5t ) | O (S atiti ) | 0(S it ) | 0 (5 izt )
Complexity unbounded 5(log(1 /€)) ) O(1) O(1)

[4] Fang Liu, Sinong Wang, Swapna Buccapatnam and Ness Shroff, “UCBoost: A Boosting Approach
to Tame Complexity and Optimality for Stochastic Bandits”, in [JCAI 2018.



* Understanding UCBoost
= UCB kernel is a distance functlon d, asslouated with |P(d) : max. g
D
o kl-UCB: dy(p, q) = plogq+(1— )10g1_q sit. d(p,q) <6

6 UCBL: dsq(p,q) = 2(p — q)°

= UCBoost ensembles a set D of distance functions (UCB-types algorithms) by
taking the minimum

® For each d in D, P(d) has closed-form solutions.

e UCBoost(D)
= Ensemble a fixed (finite) set of distance functions

* UCBoost(€)

= Ensemble an infinite set of step functions + one distance function
= Bisection search



UCB1 UCB2 UCB3 UCBoost
0.9 0.8 0.6 0.6

* Why taking the minimum?

* Philosophy of voting
= Majority vote? No!
= |f the ordering is known, follow the leader.
= UCBoost takes the minimum, thus the tightest

08 075 0.7 0.7

02 02 03 02

decision 1 1 2 2

upper confidence bound.
* Geometric view of UCBoost 5
» Kernel of UCBoost is maxd 5

deD

= Taking the minimum = solving P max d
S

" The closer to KL divergence, the better regret

Value of q



* Numerical Results
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* Computational Costs per arm per round

UCBoost(¢)

UCBoost(e)

UCBoost(e)

Scenario | klI-UCB e = 0.01(0.001) || € = 0.05(0.005) e — 0.08 UCBoost({dpq, dp,dip}) | UCBI
Bernoulli 1 | 933us 7.67us 6.67us D.7T8 18 1.67us 0.31us
Bernoulli 2 | 986us 8.76 s 7.96 s 6.27us 1.60ps 0.30us

Beta 907 us 8.33us 6.89us 5.89us 2.01us 0.33us

= 1% computation cost of kl-UCB to achieve competitive regret
= UCBoost(D) outperforms UCB1




* What is non-stationary bandits?
= The distributions associated with actions may change over time
= Unknown change points
=" Model varying user preference

* Existing recipes in stochastic domain
= Discounting: D-UCB [GM2011]
= Sliding window: SW-UCB [GM2011]
= Passively adaptive

* Change-detection based framework [5]
* CD-UCB: UCB with any CD algorithm
 CUSUM-UCB: Cumulative Sum as CD

* Actively adaptive

[5] Fang Liu, Joohyun Lee and Ness Shroff, “A Change-Detection based Framework for Piecewise-
stationary Multi-Armed Bandit Problem”, in AAAI 2018.



* Change-detection based framework

Change
* CD-UCB: develop a general UCB algorithm ﬂetec_ttf“
. algorithm
with any CD element I §
alarms” to restart
 CUSUM-UCB: develop a modified 4 )
. Bandit
Cumulative Sum as CD element algorithm
. J
* CUSUM-UCB enjoys the best known regret reward arm
bound X)) Non-stationary I
bandit
L environment )
Y= number of changes up to time T
Passively adaptive “Actively adaptive
Polic D-UCB SW-UCB Rexp3 Adapt-EvE* CUSUM-UCB lower bound
Y (Kocsis and Szepesvari 2006)|(Garivier and Moulines 2008)((Besbes, Gur, and Zeevi 2014)|(Hartland et al. 2007 Garivier and Moulines 2008)
Regret| O(y/ThrlogT) O(vV/TrlogT) OV, 12/3) Unknown 0(\/ Ty log =) Q(VT)




* Numerical Results
" Flipping environment: 2 Bernoulli arms, (1) = 0.5, 1u(2) = {

T 2T
05-A, LT<i<?L

0.8, otherwise
. . . , pi—1(7), with probability 1 — 3(t)
u . _
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 Numerical Results
= Yahoo! Front Page dataset
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* Paper in preparation

* General idea:
= Model correlations by clusters of actions
= Goal 1: show lower bound result depends on number of clusters
= Design algorithm that can aggregate the observations in each cluster
= This involves joint maximum likelihood estimation
" Goal 2: show upper bound result depends on number of clusters

* Why interesting?
= # of clusters << # of actions
= Task scheduling problem: regret depends on “types” of servers
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