Data Poisoning Attacks on Stochastic Bandits

Fang Liu and Ness Shroff The Ohio State University

Background

Adversarial learning has been well-studied in deep learning How robust are bandit learning?

- They are vulnerable in some cases [1, 2]
- Behavior be hijacked by the attacker
- If under attack, hard to recognize

There is an urge to understand

- How does attack work?
- Is there any robust bandit algorithm?

Data Poisoning Attacks

Data poisoning attacks on stochastic bandits:

- At time t, the learner chooses an action a_t from K actions
- The environment outputs an *i.i.d.* reward r_t drawn from a_t
- The attacker observes (a_t, r_t) and decides ϵ_t
- The learner observes the poisoned feedback $r_t + \epsilon_t$

Attacker Performance measure:

- Target arm a^* , suboptimal (WLOG)
- Number of playing a^* , $N_{a^*}(T) = T o(T)$ in expectation
- or with high probability $(1-\delta)$ Attack cost is sublinear in T: $C(T) = \left(\sum_{t=0}^{T} |\epsilon_t|^p\right)^{1/p}$

Learner suffers a linear regret if the attacker succeeds:

Offline Attacks

 ϵ -greedy algorithm: $\begin{cases} \text{draw uniformly over } \mathcal{A}, & \text{w.p. } \alpha_t \\ \arg\max_{a \in \mathcal{A}} \tilde{\mu}_a(t-1), & \text{otherwise} \end{cases}$ play action $a_t = -$

Post-attack empirical mean: $\tilde{\mu}_a(t)$

Quadratic program with linear constraints

$$P_1: \min_{\vec{\epsilon}_a: a \in \mathcal{A}} \sum_{a \in \mathcal{A}} ||\vec{\epsilon}_a||_2^2$$

$$s.t. \quad \tilde{\mu}_{a^*}(T) \ge \tilde{\mu}_a(T) + \xi, \quad \forall a \ne a^*$$

UCB algorithm:
$$a_t = \arg\max_{a \in \mathcal{A}} u_a(t) := \tilde{\mu}_a(t-1) + 3\sigma \sqrt{\frac{\log t}{N_a(t-1)}}.$$

Quadratic program with linear constraints

$$P_2: \min_{\vec{\epsilon}_a: a \in \mathcal{A}} \quad \sum_{a \in \mathcal{A}} ||\vec{\epsilon}_a||_2^2$$
 $s.t. \quad u_{a^*}(T+1) \ge u_a(T+1) + \xi, \quad \forall a \ne a^*$

Thomson Sampling:

$$a_t = \arg\max_{a \in \mathcal{A}} \theta_a(t) \sim \mathcal{N}(\tilde{\mu}_a(t-1)/\sigma^2, \sigma^2/N_a(t-1))$$

Quadratic program with convex constraints

$$P_{3}: \min_{\vec{\epsilon}_{a}: a \in \mathcal{A}} \sum_{a \in \mathcal{A}} ||\vec{\epsilon}_{a}||_{2}^{2}$$

$$s.t. \sum_{a \neq a^{*}} \Phi\left(\frac{\tilde{\mu}_{a}(T) - \tilde{\mu}_{a^{*}}(T)}{\sigma^{3}\sqrt{1/m_{a} + 1/m_{a^{*}}}}\right) \leq \delta$$

$$\tilde{\mu}_{a}(T) - \tilde{\mu}_{a^{*}}(T) \leq 0, \quad \forall a \neq a^{*}$$

Online Attacks

Oracle attacks:

$$\epsilon_t = -I\{a_t \neq a^*\}[\mu_{a_t} - \mu_{a^*} + \xi]^+$$

Not practical due to unknown expectations

(Prop. 1 in [1]) Assume that the bandit algorithm achieves an O(log T) regret. Then the oracle attack succeeds and the expected attack cost is $O(\sum_{i\neq a^*} [\mu_i - \mu_{a^*} + \xi]^+ \log T)$

Adaptive attack by constant estimation:

$$\epsilon_t = -\mathbf{I}\{a_t \neq a^*\} [\hat{\mu}_{a_t}(t) - \hat{\mu}_{a^*}(t) + \beta(N_{a_t}(t)) + \beta(N_{a^*}(t))]^+$$

Where
$$\beta(n) = \sqrt{\frac{2\sigma^2}{n}\log\frac{\pi^2Kn^2}{3\delta}}$$
 is decreasing in n

Pre-attack empirical mean: $\hat{\mu}_a(t)$

Theorem. Assume that the bandit algorithm achieves an O(log T) regret. Then the oracle attack succeeds and the expected attack cost is

$$\sum_{t=1}^{T} |\epsilon_t| \le O\left(\sum_{a \ne a^*} ([\mu_a - \mu_{a^*}]^+ + 4\beta(1)) \log T\right).$$

Experiments

Reference

[1] Jun, Kwang-Sung, et al. "Adversarial attacks on stochastic bandits." Advances in Neural Information Processing Systems. 2018.

[2] Ma, Yuzhe, et al. "Data poisoning attacks in contextual bandits." International Conference on Decision and Game Theory for Security. 2018.