Information Directed Sampling for Stochastic Bandits with Graph Feedback

Fang Liu¹, Swapna Buccapatnam² and Ness Shroff¹¹The Ohio State University²AT&T Labs Research

User

m

Introduction

We study stochastic multi-armed bandits with graph feedback:

• Bandit: only obtain the reward of the chosen arm;

Theorem 1. For any (deterministic or random) graph feedback, the Bayesian regret of IDS-LP is

- Graph feedback: playing one arm may reveal other arms;
- Goal: online learning to minimize the regret due to uncertainty. Motivation:

X_i(t)

 $X_k(t)$

User

User

 $X_{i}(t)$ (

- Side observations are available
- Can reduce the regret
- How to use the graph information? Applications:
- Online advertising on social media
- Recommendation systems with social connections like Yelp, Tripadvisor, ...

Model

Basic setting:

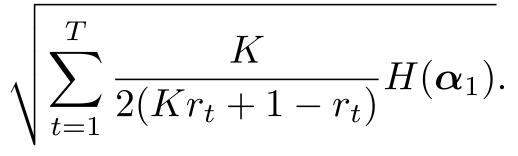
- Discrete time model of horizon T, there are K arms;
- At each time t, choosing an arm A_t returns a reward $Y_{t,At}$ drawn from the distribution of arm A_t ;
- A*: arm with the highest expected reward.
- Regret: expected loss compared to the oracle that plays arm A^{*} each time. \int_{1}^{T}

 $\mathbb{E}[R(T, \boldsymbol{\pi}^{IDS-LP})] \leq \sqrt{\frac{K}{2}TH(\boldsymbol{\alpha}_1)}.$

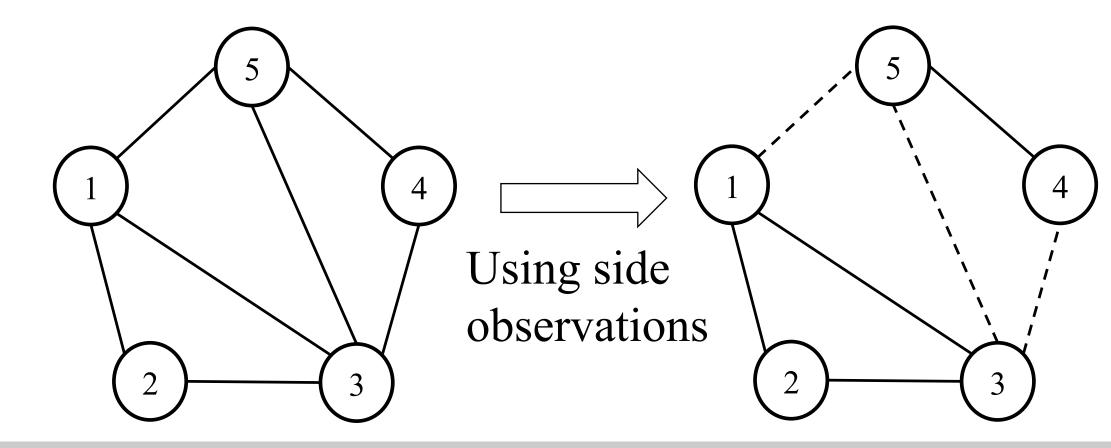
Theorem 2. For any deterministic graph feedback $(G_1, G_2, G_3, ...)$, the Bayesian regrets of TS-N, IDS-N and IDSN-LP are upper-bounded by

$$\left| \sum_{t=1}^{T} \frac{\chi(\boldsymbol{G}_t)}{2} H(\boldsymbol{\alpha}_1) \right|.$$

Theorem 3. For any random graph feedback $(r_1, r_2, r_3, ...)$, the Bayesian regrets of TS-N, IDS-N and IDSN-LP are upper-bounded by



Clique cover number, $\chi(G)$, is the smallest cardinality of clique partition.



Evaluation

$\mathbb{E}[R(T)] = \mathbb{E}\left[\sum_{t=1}^{\infty} Y_{t,A^*} - Y_{t,A_t}\right]$

Graph feedback $G_t = (K, E_t)$ may change over time.

- Deterministic graph: G_t is known.
- Random graph: G_t is unknown.
- Erdos-Renyi graph

Randomized policy π_t .

- Update the posterior distribution α_t of A^*
- Δ_t : instantaneous expected regret
- h_t: information gain

Algorithm

Algorithm 1 Meta-algorithm for Information Directed Sampling with Graph Feedback

Input: Time horizon T and feedback graph model $(G_t)_{t \leq T}$

for t from 1 to T do

Updating statistics: compute α_t , Δ_t and h_t accordingly.

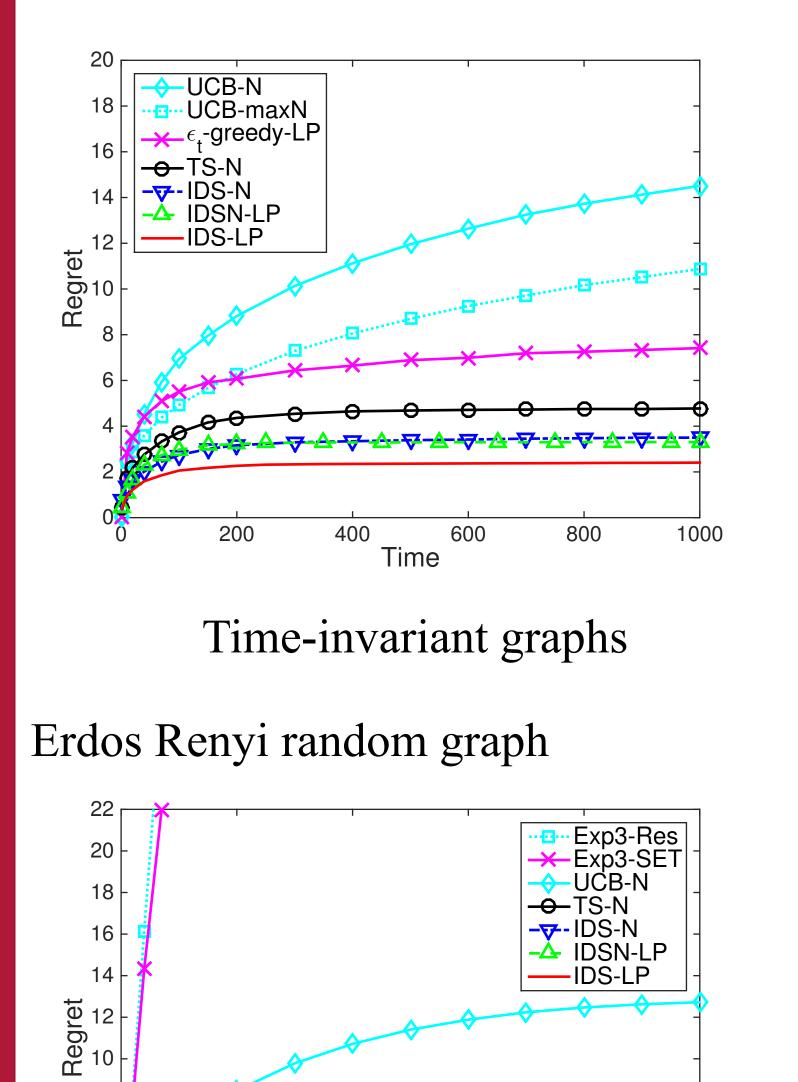
Generating policy: generate π_t as a function of $(\alpha_t, \Delta_t, h_t, G_t)$. (To be determined)

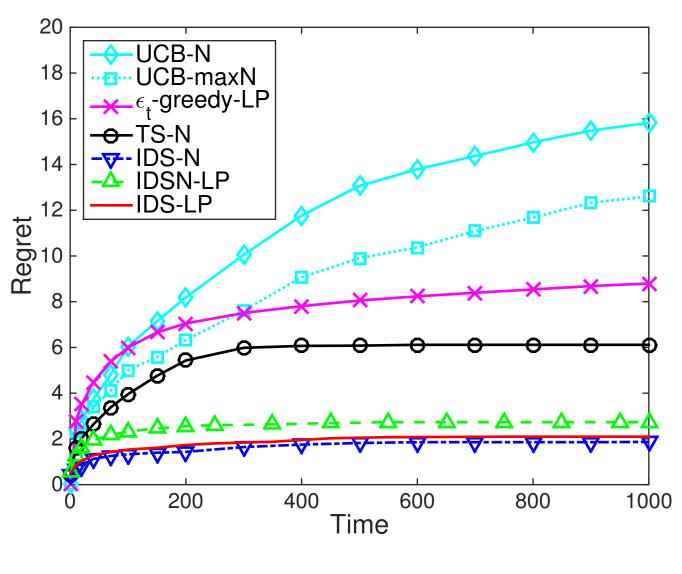
Sampling: sample A_t according to π_t , play action A_t and receive reward Y_{t,A_t} .

Observations: observe $Y_{t,a}$ if $(A_t, a) \in \mathcal{E}_t$, where $G_t = (\mathcal{K}, \mathcal{E}_t)$ is the graph generated by G_t . end for

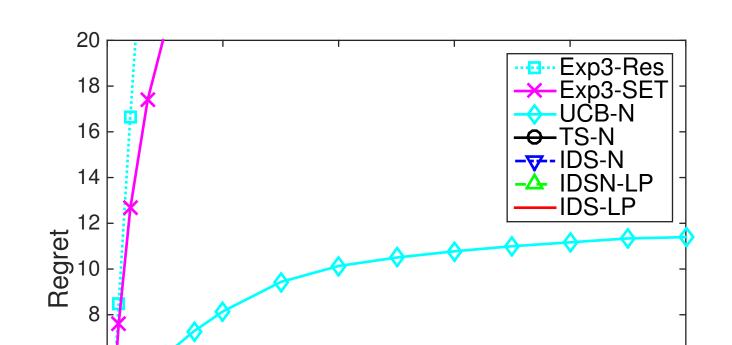
TS-N policy: $\pi_t^{\text{TS-N}} = \alpha_t$. Unaware of graph, probability matching.

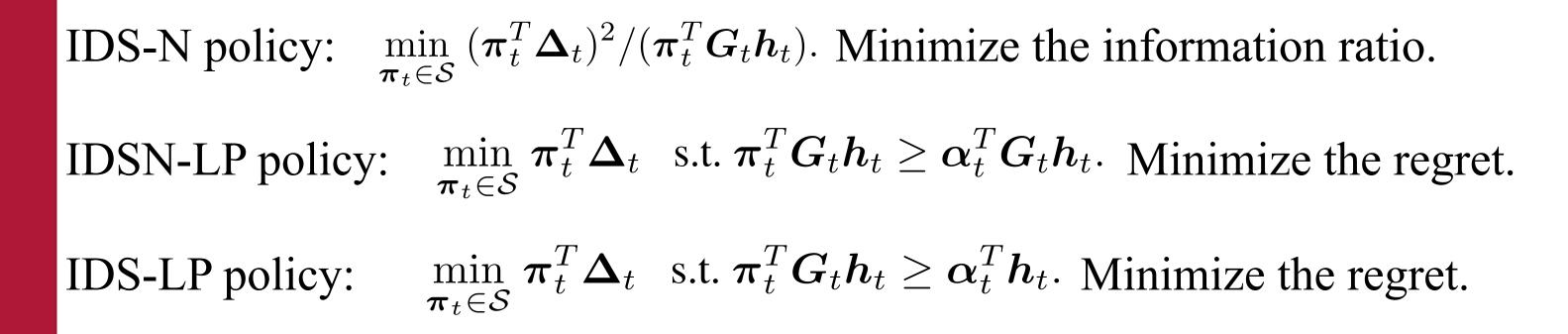
Deterministic graph

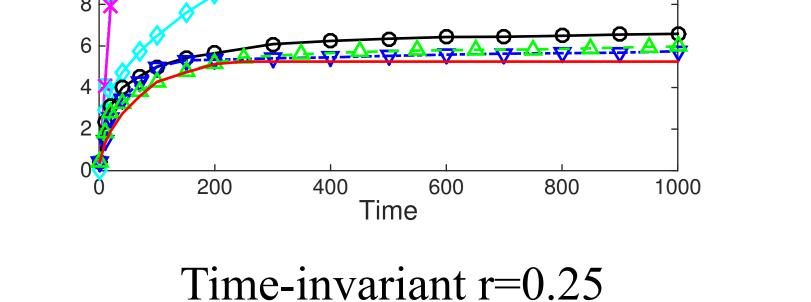


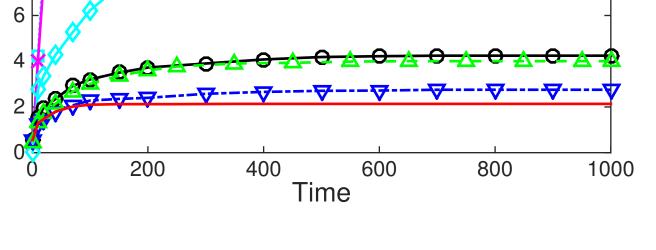


Time-variant graphs









Time-variant r_t