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Introduction 
We study stochastic multi-armed bandits with graph feedback: 
•  Bandit: only obtain the reward of the chosen arm; 
•  Graph feedback: playing one arm may reveal other arms; 
•  Goal: online learning to minimize the regret due to uncertainty. 
Motivation: 
•  Side observations are available  
•  Can reduce the regret 
•  How to use the graph information? 
Applications: 
•  Online advertising on social media 
•  Recommendation systems with  

        social connections like Yelp,  
   Tripadvisor, …  
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Model 
Basic setting: 
•  Discrete time model of horizon T, there are K arms; 
•  At each time t, choosing an arm At returns a reward Yt,At drawn from the 

distribution of arm At; 
•  A*: arm with the highest expected reward. 
•  Regret: expected loss compared to the oracle that plays arm A* each time.  

Graph feedback Gt=(K, Et) may change over time. 
•  Deterministic graph: Gt is known. 
•  Random graph: Gt is unknown. 
•  Erdos-Renyi graph 
Randomized policy πt. 
•  Update the posterior distribution αt of A* 
•  Δt: instantaneous expected regret 
•  ht: information gain 

Algorithm 

2 Problem Formulation85

2.1 Stochastic Bandit Model86

We consider a Bayesian formulation of the stochastic K-armed bandit problem in which uncertainties87

are modeled as random variables. At each time t 2 N, a decision maker chooses an action At from88

a finite action set K = {1, . . . ,K} and receives the corresponding random reward Yt,At . Without89

loss of generality, we assume the space of possible rewards Y = [0, 1]. Note that the results in this90

work can be extended to the case where reward distributions are sub-Gaussian. There is a random91

variable Yt,a 2 Y associated with each action a 2 K and t 2 N. We assume that {Yt,a, 8a 2 K} are92

independent for each time t. Let Y t , (Yt,a)a2K be the vector of random variables at time t 2 N.93

The true reward distribution p⇤ is a distribution over YK , which is randomly drawn from the family94

of distributions P and unknown to the decision maker. Conditioned on p⇤, (Y t)t2N is an independent95

and identically distributed sequence with each element Y t sampled from the distribution p⇤.96

Let A⇤ 2 argmaxa2K E[Yt,a|p⇤] be the true optimal action conditioned on p⇤. Then the T period97

regret of the decision maker is the expected difference between the total rewards obtained by an98

oracle that always chooses the optimal action and the accumulated rewards up to time horizon T .99

Formally, we study the expected regret100

E[R(T )] = E
"

TX

t=1

Yt,A⇤ � Yt,At

#
, (1)

where the expectation is taken over the randomness in the action sequence (A
1

, . . . , AT ) and the101

outcomes (Y t)t2N and over the prior distribution over p⇤. This notion of regret is also known as102

Bayesian regret or Bayes risk.103

2.2 Graph Feedback Model104

In this problem, we assume the existence of side observations, which is described by a graph105

Gt = (K, Et) over the action set for each time t. The graph Gt may be directed or undirected and106

can be dependent on time t. At each time t, the decision maker observes the reward Yt,At for playing107

action At as well as the outcome Yt,a for each action a 2 {a 2 K|(At, a) 2 Et}. Note that it becomes108

the classical bandit feedback setting when the graph is empty (i.e., no edge exists) and it becomes the109

full-information (expert) setting when the graph is complete for all time t. In this work, we study two110

types of graph feedback models: deterministic graph and Erdős-Rényi random graph.111

Deterministic graph. In the deterministic graph feedback model, we assume that the graph Gt112

is fixed before the decision is made at each time t. Let Gt 2 RK⇥K be the adjacent matrix that113

represents the deterministic graph feedback structure Gt. Let Gt(i, j) be the element at the i-th row114

and j-th column of the matrix. Then Gt(i, j) = 1 if there exists an edge (i, j) 2 Et and Gt(i, j) = 0115

otherwise. Note that we assume Gt(i, i) = 1 for any i 2 K.116

Definition 1. (Clique number) A Clique of a graph G = (K, E) is a subset S ✓ K such that the117

sub-graph formed by S and E is a complete graph. A Clique cover of a graph G = (K, E) is a118

partition of K, denoted by C, such that S is a clique for each S 2 C. The cardinality of the smallest119

clique cover is called the clique number, which is denoted by �(G).120

In this work, we slightly abuse the notation of clique number and use �(Gt) and �(Gt) interchange-121

ably since Gt fully characterizes the graph structure Gt.122

Erdős-Rényi Random Graph. In the Erdős-Rényi random graph feedback model, we assume that123

the graph Gt is generated from an Erdős-Rényi model with time-dependent parameter rt after the124

decision is made at each time t. In other words, the decision maker can reveal the outcome Yt,a with125

probability rt for each action a 6= At at time t. This feedback model is also known as probabilistically126

triggered arms [18].127

We generalize the adjacent matrix representation of a deterministic graph feedback model to a random128

graph feedback model, such that each (i, j)-th element of the matrix is the probability of observing129

action j via playing action i. For each time t, the adjacent matrix is denoted by Gt to unify the130

representation of our algorithms and analysis. Then, we have that Gt(i, i) = 1 for any i 2 K and131

Gt(i, j) = rt for any i 6= j. Note that parameter rt fully characterizes the random graph feedback132

model.133
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Algorithm 1 Meta-algorithm for Information Directed Sampling with Graph Feedback

Input: Time horizon T and feedback graph model (Gt)tT

for t from 1 to T do
Updating statistics: compute ↵t, �t and ht accordingly.
Generating policy: generate ⇡t as a function of (↵t, �t, ht, Gt). (To be determined)
Sampling: sample At according to ⇡t, play action At and receive reward Yt,At .
Observations: observe Yt,a if (At, a) 2 Et, where Gt = (K, Et) is the graph generated by Gt.

end for

In practice, the information gain vector gt is quite complicated to compute even assuming a Bernoulli177

distribution model for each action. However, computing the information gain of observing each178

individual action, i.e., ht, is much easier since it is only the mutual information of two random179

variables. By Proposition 1, we have that  t(⇡t)  (⇡T
t �t)

2/(⇡T
t Gtht). So we can design our180

IDS based policies according to ht and Gt instead of gt. We provide a meta-algorithm for IDS based181

policies in Algorithm 1. What remains is to design ⇡t as a function of ↵t, �t, ht and Gt. Note that182

one can replace Gtht by gt in the IDS based algorithms and the regret results in Section 4 still hold.183

TS-N policy is a natural adaption of Thompson Sampling under the graph feedback. It replaces the184

generating policy step in Algorithm 1 by185

⇡TS-N
t = ↵t. (4)

The TS-N policy ignores the graph structure information Gt, and sample the action according to the186

posterior distribution of A⇤.187

IDS-N policy replaces the generating policy step in Algorithm 1 by ⇡IDS-N
t , which is the solution of188

the following optimization problem P
1

.189

P
1

: min

⇡t2S
(⇡T

t �t)
2/(⇡T

t Gtht). (5)

The IDS-N policy greedily minimizes the information ratio (upper bound) at each time.190

IDSN-LP policy replaces the generating policy step in Algorithm 1 by ⇡IDSN-LP
t , which is the solution191

of the following linear programming problem P
2

.192

P
2

: min

⇡t2S
⇡T

t �t s.t. ⇡T
t Gtht � ↵T

t Gtht. (6)

The IDSN-LP policy greedily minimizes the expected instantaneous regret at each time with the193

constraint that the information gain is at least the one obtained by TS-N policy.194

IDS-LP policy replaces the generating policy step in Algorithm 1 by ⇡IDS-LP
t , which is the solution195

of the following linear programming problem P
3

.196

P
3

: min

⇡t2S
⇡T

t �t s.t. ⇡T
t Gtht � ↵T

t ht. (7)

The IDS-LP policy greedily minimizes the expected instantaneous regret at each time with the197

constraint that the information gain is at least the one obtained by TS policy without graph feedback.198

IDS-LP policy reduces the extent of exploration compared to IDSN-LP policy. Intuitively, it greedily199

exploits the current knowledge of the optimal action with controlled exploration. Though we can not200

find better regret bound for IDS-LP than IDSN-LP, IDS-N and TS-N, IDS-LP outperforms the others201

in numerical results as shown in Section 5.202

4 Regret Analysis203

In this section, we first present a known general bound for any randomized policy and provide the204

regret upper bound results of the proposed policies for the deterministic and random graph feedback.205

The regret analysis relies on the following bound, which is shown in [19].206

Lemma 1. (General Bound from [19]) For any policy ⇡ = (⇡
1

,⇡
2

,⇡
3

, . . .) and time horizon207

T 2 N,208

E[R(T,⇡)] 

vuut
TX

t=1

E⇡[ t(⇡t)]H(↵
1

). (8)
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Analysis Lemma 1 shows that we only need to bound expected information ratio E⇡[ t(⇡t)] to obtain an209

upper bound for a randomized policy. The next result follows from the fact that the information ratio210

of IDS-LP policy can be bounded by K/2.211

Theorem 1. For any (deterministic or random) graph feedback, the Bayesian regret of IDS-LP is212

E[R(T,⇡IDS-LP
)] 

r
K

2

TH(↵
1

).

The key idea of the proof is comparing the information ratio of IDS-LP to that of TS with bandit213

feedback. The detailed proof of Theorem 1 can be found in Appendix A.3. The next proposition214

shows a general bound for information ratios of TS-N, IDS-N and IDSN-LP policies.215

Proposition 2. For any (deterministic or random) graph feedback Gt, we have that  t(⇡TS-N
t ),216

 t(⇡IDS-N
t ) and  t(⇡IDSN-LP

t ) are upper-bounded by  t , (

�T
t ↵t)

2

(Gtht)
T↵t

.217

The proof of Proposition 2 can be found in Appendix A.2. Combining this result with Lemma 1, we218

can obtain unified regret result for TS-N, IDS-N and IDSN-LP by bounding the ratio  t. Now, we219

are ready to present the regret results separately for the deterministic and the random graph feedback.220

4.1 Deterministic Graph221

The following result shows the unified regret upper bound of TS-N, IDS-N and IDSN-LP under the222

deterministic graph feedback. The detailed proof is presented in Apendix A.4.223

Theorem 2. For any deterministic graph feedback (G
1

,G
2

,G
3

, . . .), the Bayesian regrets of TS-N,224

IDS-N and IDSN-LP are upper-bounded by225 vuut
TX

t=1

�(Gt)

2

H(↵
1

). (10)

Recently, a similar result for TS-N has been shown to be
q
maxt

�(Gt)

2

TH(↵
1

) in [4]. Apparently,226

Theorem 2 provides a tighter bound. We have the following result when the graph is also time-227

invariant.228

Corollary 1. For any time-invariant and deterministic graph feedback G (i.e., Gt = G 8t 2 N), the229

Bayesian regrets of TS-N, IDS-N and IDSN-LP are upper-bounded by230 r
�(G)

2

TH(↵
1

). (11)

Corollary 1 shows that TS-N, IDS-N and IDSN-LP can benefit from the side observations. In other231

words, the above regret upper bound scales with the clique number of the graph instead of the number232

of actions (it is known that the regret bound of TS without side observations is (9)). A similar result233

has been disclosed by Caron et al. [2] in the form of problem-dependent upper bound. They show234

that UCB-N scales with the clique number compared to UCB without side observations. Later,235

Buccapatnam et al. [3] improved the result by exploiting the graph structure and guaranteed scaling236

with the independence number4. Compared to TS-N, IDS based policies use the graph structure to237

balance the exploitation and exploration. This raises an open question of determining better regret238

bounds for our IDS based policies in terms of the graph-dependent constant.239

4.2 Erdős-Rényi Random Graph240

The following result shows the unified regret upper bound of TS-N, IDS-N and IDSN-LP under the241

Erdős-Rényi random graph feedback. The detailed proof is presented in Apendix A.5.242

Theorem 3. For any random graph feedback (r
1

, r
2

, r
3

, . . .), the Bayesian regrets of TS-N, IDS-N243

and IDSN-LP are upper-bounded by244 vuut
TX

t=1

K

2(Krt + 1� rt)
H(↵

1

). (12)

4In general, the independence number is no more than the clique number.
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Clique cover number, 𝜒(G), is the smallest cardinality of clique partition. 

Using side 
 observations 

TS-N policy:                          Unaware of graph, probability matching. 
 
IDS-N policy:                                          Minimize the information ratio. 
 
IDSN-LP policy:                                                              Minimize the regret. 
 
IDS-LP policy:                                                             Minimize the regret. 

Algorithm 1 Meta-algorithm for Information Directed Sampling with Graph Feedback

Input: Time horizon T and feedback graph model (Gt)tT

for t from 1 to T do
Updating statistics: compute ↵t, �t and ht accordingly.
Generating policy: generate ⇡t as a function of (↵t, �t, ht, Gt). (To be determined)
Sampling: sample At according to ⇡t, play action At and receive reward Yt,At .
Observations: observe Yt,a if (At, a) 2 Et, where Gt = (K, Et) is the graph generated by Gt.

end for

In practice, the information gain vector gt is quite complicated to compute even assuming a Bernoulli177

distribution model for each action. However, computing the information gain of observing each178

individual action, i.e., ht, is much easier since it is only the mutual information of two random179

variables. By Proposition 1, we have that  t(⇡t)  (⇡T
t �t)

2/(⇡T
t Gtht). So we can design our180

IDS based policies according to ht and Gt instead of gt. We provide a meta-algorithm for IDS based181

policies in Algorithm 1. What remains is to design ⇡t as a function of ↵t, �t, ht and Gt. Note that182

one can replace Gtht by gt in the IDS based algorithms and the regret results in Section 4 still hold.183

TS-N policy is a natural adaption of Thompson Sampling under the graph feedback. It replaces the184

generating policy step in Algorithm 1 by185

⇡TS-N
t = ↵t. (4)

The TS-N policy ignores the graph structure information Gt, and sample the action according to the186

posterior distribution of A⇤.187

IDS-N policy replaces the generating policy step in Algorithm 1 by ⇡IDS-N
t , which is the solution of188

the following optimization problem P
1

.189

P
1

: min

⇡t2S
(⇡T

t �t)
2/(⇡T

t Gtht). (5)

The IDS-N policy greedily minimizes the information ratio (upper bound) at each time.190

IDSN-LP policy replaces the generating policy step in Algorithm 1 by ⇡IDSN-LP
t , which is the solution191

of the following linear programming problem P
2

.192

P
2

: min

⇡t2S
⇡T

t �t s.t. ⇡T
t Gtht � ↵T

t Gtht. (6)

The IDSN-LP policy greedily minimizes the expected instantaneous regret at each time with the193

constraint that the information gain is at least the one obtained by TS-N policy.194

IDS-LP policy replaces the generating policy step in Algorithm 1 by ⇡IDS-LP
t , which is the solution195
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3
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P
3

: min

⇡t2S
⇡T

t �t s.t. ⇡T
t Gtht � ↵T

t ht. (7)

The IDS-LP policy greedily minimizes the expected instantaneous regret at each time with the197

constraint that the information gain is at least the one obtained by TS policy without graph feedback.198

IDS-LP policy reduces the extent of exploration compared to IDSN-LP policy. Intuitively, it greedily199

exploits the current knowledge of the optimal action with controlled exploration. Though we can not200

find better regret bound for IDS-LP than IDSN-LP, IDS-N and TS-N, IDS-LP outperforms the others201

in numerical results as shown in Section 5.202
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1

,⇡
2

,⇡
3
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T 2 N,208
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vuut
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1
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