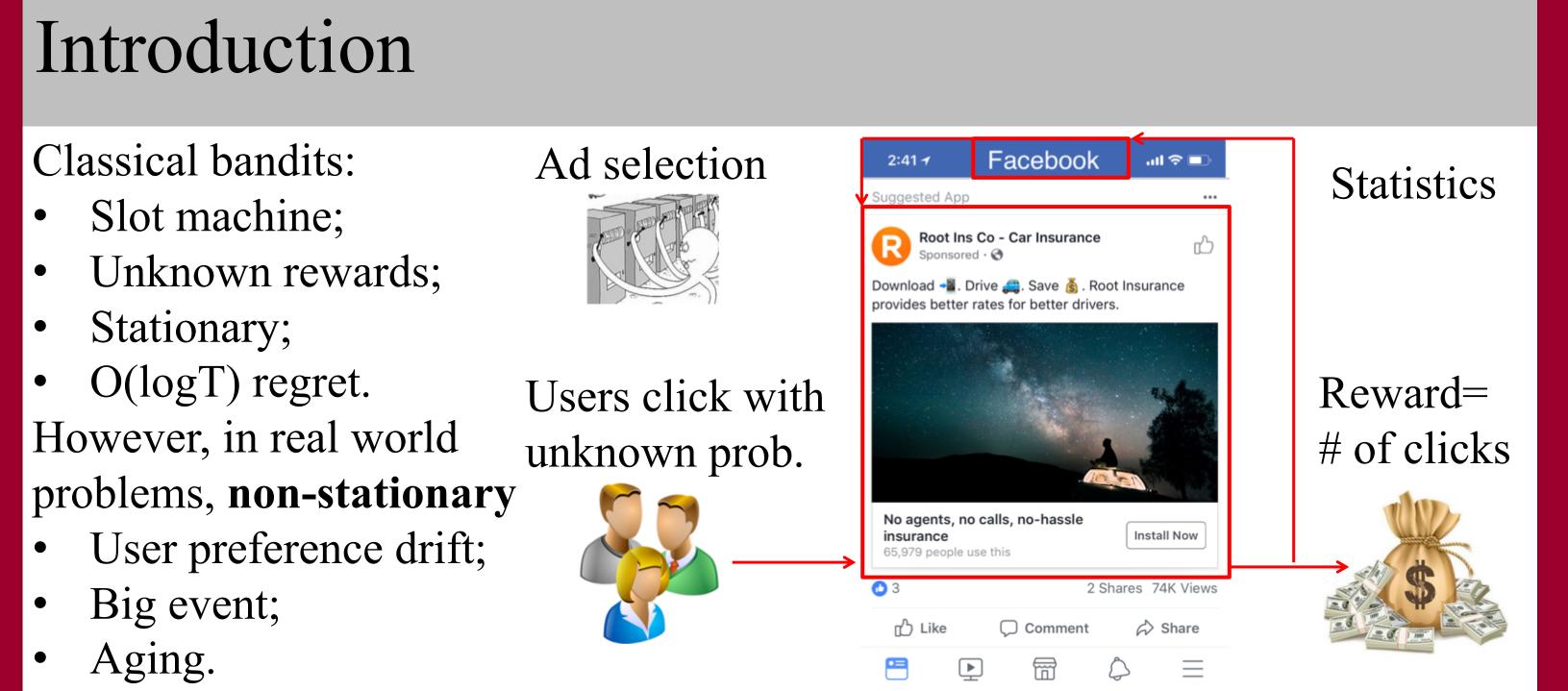
# A Change-Detection Based Framework for Piecewise-Stationary Multi-Armed Bandit Problem

Fang Liu, Joohyun Lee and Ness Shroff



The Ohio State University





**Theorem 1.** (CD-UCB) Let  $\xi = 1$ . Under Assumption 1, for any  $\alpha \in [0,1)$  and any arm  $i \in [0,1)$  $\{1, \ldots, K\}$ , the CD-UCB policy achieves,

#### Existing methods:

- Passively adaptive policies D-UCB, SW-UCB, Rexp3- with guarantee
- Actively adaptive policies AdaptEvE, CTS without guarantee

## Model

### Basic setting:

- Discrete time model of horizon T, there are K arms;
- At each time t, choosing an arm  $I_t$  returns a reward  $X_t(I_t)$ ;
- The expectations,  $\mu_t(i)$ , may change over time;
- $i_{t}^{*}$ : arm with the highest expected reward at time t.
- $\gamma_T$ : number of change points up to time T.
- Regret: expected loss compared to the oracle that plays arm  $i_t^*$  each time.

 $\mathbb{E}[\tilde{N}_T(i)] \le (\gamma_T + \mathbb{E}[F]) \cdot \left(\frac{4\log T}{(\Delta_{\mu_T(i)})^2} + \frac{\pi^2}{3}\right) + \frac{\pi^2}{3} + \gamma_T \cdot \mathbb{E}[D] + \frac{\alpha T}{K}.$ 

**Corollary 1.** (CD-UCB  $|\alpha = 0$ ) If  $\alpha = 0$  and  $\xi = 1$ , then the regret of CD-UCB is

 $R_{\pi^{CD-UCB}}(T) = O((\gamma_T + \mathbb{E}[F]) \cdot \log T + \gamma_T \cdot \mathbb{E}[D])).$ 

**Theorem 3.** (CUSUM-UCB) Let  $\xi = 1$ . Under Assumptions 1, 2 and 3, for any  $\alpha \in (0, 1)$  and any arm  $i \in \{1, \ldots, K\}$ , the CUSUM-UCB policy achieves,

$$\mathbb{E}[\tilde{N}_{T}(i)] \leq R_{1} \cdot R_{2} + \frac{\pi^{2}}{3} + \frac{\alpha T}{K},$$
  
for  $R_{1} = \gamma_{T} + \frac{2T}{(1 - 2\exp(-2\epsilon^{2}M))\exp(C_{1}h)}, R_{2} = \frac{4\log T}{(\Delta_{\mu_{T}(i)})^{2}} + \frac{\pi^{2}}{3} + M + \frac{C_{2}(h+1)K}{\alpha}.$ 

**Corollary 2.** Under the Assumptions 1, 2 and 3, if horizon T and the number of breakpoints  $\gamma_T$  are known in advance, then we can choose  $h = \frac{1}{C_1} \log \frac{T}{\gamma_T}$  and  $\alpha = K \sqrt{\frac{C_2 \gamma_T}{C_1 T}} \log \frac{T}{\gamma_T}$  so that

$$R_{\pi^{CUSUM-UCB}}(T) = O\left(\frac{\gamma_T \log T}{(\Delta_{\mu_T(i)})^2} + \sqrt{T\gamma_T \log \frac{T}{\gamma_T}}\right).$$

|        | Passively adaptive           |                              |                               | Actively adaptive      |                                               |                              |
|--------|------------------------------|------------------------------|-------------------------------|------------------------|-----------------------------------------------|------------------------------|
| Policy | D-UCB                        | SW-UCB                       | Rexp3                         | Adapt-EvE              | CUSUM-UCB                                     | lower bound                  |
|        | (Kocsis and Szepesvári 2006) | (Garivier and Moulines 2008) | (Besbes, Gur, and Zeevi 2014) | (Hartland et al. 2007) |                                               | (Garivier and Moulines 2008) |
| Regret | $O(\sqrt{T\gamma_T}\log T)$  | $O(\sqrt{T\gamma_T \log T})$ | $O(V_T^{1/3}T^{2/3})$         | Unknown                | $O(\sqrt{T\gamma_T \log \frac{T}{\gamma_T}})$ | $\Omega(\sqrt{T})$           |

## Evaluation

 $R_{\pi}(T) = \mathbb{E}\left|\sum_{t=1}^{I} \left(X_t(i_t^*) - X_t(I_t)\right)\right|$ 

Assumption 1: (piecewise stationarity) The shortest interval is larger than KM. Assumption 2: (detectability) The expectation drift is no less than  $3\epsilon$ . Assumption 3: Bernoulli rewards.

## Algorithm

We propose change-detection based upper confidence bounds (CD-UCB).

- The change detection algorithm controls the restarting of UCB index;
- Mix the UCB decision with uniform sampling to feed CD algorithm. We propose a tailored CUSUM algorithm for bandit problems.

| Algorithm 1 CD-UCB                                              |  |  |  |  |  |
|-----------------------------------------------------------------|--|--|--|--|--|
| <b>Require:</b> T, $\alpha$ and an algorithm $CD(\cdot, \cdot)$ |  |  |  |  |  |
| Initialize $\tau_i = 1, \forall i$ .                            |  |  |  |  |  |
| for $t$ from 1 to $T$ do                                        |  |  |  |  |  |
| Update according to equations (3-5).                            |  |  |  |  |  |
| Play arm $I_t$ and observe $X_t(I_t)$ .                         |  |  |  |  |  |
| if $CD(I_t, X_t(I_t)) == 1$ then                                |  |  |  |  |  |
|                                                                 |  |  |  |  |  |

Change detection algorithm "alarms" to restart Bandit algorithm arm Non-stationary bandit environment

#### Algorithm 2 Two-sided CUSUM **Require:** parameters $\epsilon$ , M, h and $\{y_k\}_{k>1}$ Initialize $g_0^+ = 0$ and $g_0^- = 0$ . for each k do Calculate $s_k^-$ and $s_k^+$ according to (6). Update $g_k^+$ and $g_k^-$ according to (7). if $g_k^+ \ge h$ or $g_k^- \ge h$ then

reward

 $X_t(I_t)$ 

