
A Change-Detection Based Framework for Piecewise-Stationary
Multi-Armed Bandit Problem

Fang Liu, Joohyun Lee and Ness Shroff

Introduction

Model

Algorithm

Analysis

Evaluation

Basic setting:
• Discrete time model of horizon T, there are K arms;
• At each time t, choosing an arm It returns a reward Xt(It) ;
• The expectations, µt(i), may change over time;
• i*

t:arm with the highest expected reward at time t.
• γT: number of change points up to time T.
• Regret: expected loss compared to the oracle that plays arm i*

t each time.

Assumption 1: (piecewise stationarity) The shortest interval is larger than KM.
Assumption 2: (detectability) The expectation drift is no less than 3!.
Assumption 3: Bernoulli rewards.

moving window of a fixed length. The regret of SW-UCB
is at most O(

p
�TT log T). Exp3.S (Auer et al. 2002) also

achieves the same regret bound, where a uniform exploration
is mixed with the standard Exp3 (Cesa-Bianchi and Lugosi
2006) algorithm. Similarly, Besbes, Gur, and Zeevi (2014)
proposed a Rexp3 algorithm, which restarts the Exp3 al-
gorithm periodically. It is shown that the regret is upper-
bounded by O(V

1/3
T T 2/3

), where VT denotes the total re-
ward variation budget up to time T .1 The increased regret of
Rexp3 comes from the adversarial nature of the algorithm,
which assumes that the environment changes every time slot
in the worst case.

Second, actively adaptive policies adopt a change de-
tection algorithm to monitor the varying environment and
restart the bandit algorithms when there is an alarm. Adapt-
EvE, proposed by Hartland et al. (2007), employs a Page-
Hinkley Test (PHT) (Hinkley 1971) to detect change points
and restart the UCB policy. PHT has also been used to
adapt the window length of SW-UCL (Srivastava, Reverdy,
and Leonard 2014), which is an extension of SW-UCB in
the multi-armed bandit with Gaussian rewards. However,
the regret upper bounds of Adapt-EvE and adaptive SW-
UCL are still open problems. These works are closely re-
lated to our work, as one can regard them as instances of
our change-detection based framework. We highlight that
one of our contributions is to provide an analytical result
for such a framework. Mellor and Shapiro (2013) took a
Bayesian view of the non-stationary bandit problem, where
a stochastic model of the dynamic environment is assumed
and a Bayesian online change detection algorithm is ap-
plied. Similar to the work by Hartland et al. (2007), the the-
oretical analysis of the Change-point Thompson Sampling
(CTS) is still open. Exp3.R (Allesiardo and Féraud 2015)
combines Exp3 and a drift detector, and achieves the regret
O(�T

p
T log T), which is not efficient when the change rate

�T is high.
In sum, for various passively adaptive policies theoreti-

cal guarantees have been obtained, as they are considered
more tractable to analyze. However, it has been demon-
strated via extensive numerical studies that actively adap-
tive policies outperform passively adaptive policies (Mellor
and Shapiro 2013). The intuition behind this is that actively
adaptive policies can utilize the balance between exploration
and exploitation by bandit algorithms, once a change point
is detected and the environment stays stationary for a while,
which is often true in real world applications. This obser-
vation motivates us to construct a change-detection based
framework, where a class of actively adaptive policies can
be developed with both good theoretical bounds and good
empirical performance. Our main contributions are as fol-
lows.

1. We propose a change-detection based framework for a
piecewise-stationary bandit problem, which consists of a
change detection algorithm and a bandit algorithm. We
develop a class of policies, CD-UCB, that uses UCB
as a bandit algorithm. We then design two instances
1VT satisfies

PT�1
t=1 supi2K |µt(i) � µt+1(i)|  VT for the

expected reward of arm i at time t, µt(i).

of this class, CUSUM-UCB and PHT-UCB, that exploit
CUSUM (cumulative sum) and PHT as their change de-
tection algorithms, respectively.

2. We provide a regret upper bound for the CD-UCB class,
for given change detection performance. For CUSUM, we
obtain an upper bound on the mean detection delay and
a lower bound on the mean time between false alarms,
and show that the regret of CUSUM-UCB is at most
O(

q
T�T log

T
�T

). To the best of our knowledge, this is
the first regret bound for actively adaptive UCB policies
in the bandit feedback setting.

3. The performance of the proposed and existing policies
are validated by both synthetic and real world datasets,
and we show that our proposed algorithms are superior to
other existing policies in terms of regret.

We present the problem setting in Section 2 and introduce
our framework in Section 3. We propose our algorithms in
Section 4. We then present performance guarantees in Sec-
tion 5. In Section 6, we compare our algorithms with other
existing algorithms via simulation. Finally, we conclude the
paper.

2 Problem Formulation

2.1 Basic Setting

Let K = {1, . . . ,K} be a set of arms. Let {1, 2, . . . , T}
denote the decision slots faced by a decision maker and T
is the time horizon. At each time slot t, the decision maker
chooses an arm It 2 K and obtains a reward Xt(It) 2 [0, 1].
Note that the results can be generalized to any bounded in-
terval. The rewards {Xt(i)}t�1

for arm i are modeled by a
sequence of independent random variables from potentially
different distributions, which are unknown to the decision
maker. Let µt(i) denote the expectation of reward Xt(i) at
time slot t, i.e., µt(i) = E[Xt(i)]. Let i⇤t be the arm with
highest expected reward at time slot t, denoted by µt(⇤) ,
µt(i

⇤
t) = maxi2K µt(i). Let �µT (i) , min{µt(⇤)� µt(i) :

t  T, i 6= i⇤t }, be the minimum difference over all time
slots between the expected rewards of the best arm i⇤t and
the arm i while the arm i is not the best arm.

A policy ⇡ is an algorithm that chooses the next arm to
play based on the sequence of past plays and obtained re-
wards. The performance of a policy ⇡ is measured in terms
of the regret. The regret of ⇡ after T plays is defined as the
expected total loss of playing suboptimal arms. Let R⇡(T)

denote the regret of policy ⇡ after T plays and let ˜NT (i) be
the number of times arm i has been played when it is not the
best arm by ⇡ during the first T plays.

R⇡(T) = E
"

TX

t=1

(Xt(i
⇤
t)�Xt(It))

#
, (1)

˜NT (i) =

TX

t=1

1{It=i, µt(i) 6=µt(⇤)}. (2)

Note that the regret R⇡(T) of policy ⇡ is upper-bounded
by

PK
i=1

E[˜NT (i)] since the rewards are bounded in (1). In

Algorithm 1 CD-UCB

Require: T , ↵ and an algorithm CD(·, ·)
Initialize ⌧i = 1, 8i.
for t from 1 to T do

Update according to equations (3-5).
Play arm It and observe Xt(It).
if CD(It, Xt(It)) == 1 then

⌧It = t+ 1; reset CD(It, ·).
end if

end for

Algorithm 2 Two-sided CUSUM

Require: parameters ✏, M , h and {yk}k�1

Initialize g+
0

= 0 and g�
0

= 0.
for each k do

Calculate s�k and s+k according to (6).
Update g+k and g�k according to (7).
if g+k � h or g�k � h then

Return 1
end if

end for

Given such a change detection algorithm, we can employ it
to control the UCB algorithm, which is our CD-UCB policy
as shown in Algorithm 1. We clarify some useful notations
as follows. Let ⌧i = ⌧i(t) be the last time that the CD(i, ·)
alarms and restarts for arm i before time t. Then the num-
ber of valid observations (after the latest detection alarm)
for arm i up to time t is denoted as Nt(i). Let nt be the to-
tal number of valid observations for the decision maker. For
each arm i, let ¯Xt(i) be the sample average and Ct(i) be the
confidence padding term. In particular,

Nt(i) =
tX

s=⌧i

1{Is=i}, nt =

KX

i=1

Nt(i), (3)

¯Xt(i)=
tX

s=⌧i

Xs(i)

Nt(i)
1{Is=i}, Ct(i)=

s
⇠ log nt

Nt(i)
, (4)

where ⇠ is some positive real number. Thus, the UCB index
for each arm i is ¯Xt(i) + Ct(i). Parameter ↵ is a tuning
parameter we introduce in the CD-UCB policy. At each time
t, the policy plays the arm

It =

⇢
argmaxi2K

�
¯Xt(i) + Ct(i)

�
, w.p. 1� ↵

i, 8i 2 K,w.p. ↵
K

. (5)

Parameter ↵ controls the fraction of plays we exploit to
feed the change detection algorithm. A large ↵ may drive
the algorithm to a linear regret performance while a small ↵
can limit the detectability of change detection algorithm. We
will discuss the choice of ↵ in Sections 5 and 6.

4.2 Tailored CUSUM algorithm

A change detection algorithm observes a sequence of inde-
pendent random variables, y

1

, y
2

, . . ., in an online manner,
and outputs an alarm once a change point is detected. In the
context of the traditional change detection problem, one as-
sumes that the parameters ✓

0

and ✓
1

are known for the den-
sity function p(·|✓). In addition, yk is sampled from distri-
bution under ✓

0

(✓
1

) before (after) the breakpoint. Let u
0

(u
1

) be the mean of yk before (after) the change point. The
CUSUM algorithm, originally proposed by (Page 1954), has
been proven to be optimal in detecting abrupt changes in the
sense of worst mean detection delay (Lorden 1971). The ba-
sic idea of the CUSUM algorithm is to take a function of
the observed sample (e.g., the logarithm of likelihood ratio

log

p(yk|✓1)
p(yk|✓0)) as the step of a random walk. This random walk

is designed to have a positive mean drift after a change point
and have a negative mean drift without a change. Hence,
CUSUM signals a change if this random walk crosses some
positive threshold h.

We propose a tailored CUSUM algorithm that works in
the bandit setting. To be specific, we use the first M samples
to calculate the average, û

0

, (

PM
k=1

yk)/M. Then we con-
struct two random walks, which have negative mean drifts
before the change point and have positive mean drifts after
the change. In particular, we design a two-sided CUSUM al-
gorithm, described in Algorithm 2, with an upper (lower)
random walk monitoring the possible positive (negative)
mean shift. Let s+k (s�k) be the step of the upper (lower) ran-
dom walk. Then s+k and s�k are defined as

(s+k , s
�
k) = (yk � û

0

� ✏, û
0

� yk � ✏)1{k>M}. (6)

Let g+k (g�k) track the positive drift of upper (lower) random
walk. In particular,

g+k = max(0, g+k�1

+ s+k), g�k = max(0, g�k�1

+ s�k).

(7)

The change point is detected when either of them crosses the
threshold h. The parameter h is important in the detection
delay and false alarm trade-off. We discuss the choice of h
in Section 5.

4.3 CUSUM-UCB policy

Now we are ready to introduce our CUSUM-UCB policy,
which is a CD-UCB policy with CUSUM as a change de-
tection algorithm. In particular, it takes K parallel CUSUM
algorithms as CD(·, ·) in CD-UCB. Formal description of
CUSUM-UCB can be found in Algorithm 3, provided in our
technical report (Liu, Lee, and Shroff 2017).

We introduce another instance of our CD-UCB with the
PHT algorithm (Hinkley 1971) running as the change de-
tection algorithm, named PHT-UCB. PHT can be viewed as
a variant of Algorithm 2 by replacing (6) with (s+k , s

�
k) =

(yk � ŷk � ✏, ŷk � yk � ✏), where ŷk =

1

k

Pk
s=1

ys.

5 Performance Analysis

In this section, we analyze the performance in each part of
the proposed algorithm: (a) our bandit algorithm (i.e., CD-

Algorithm 1 CD-UCB

Require: T , ↵ and an algorithm CD(·, ·)
Initialize ⌧i = 1, 8i.
for t from 1 to T do

Update according to equations (3-5).
Play arm It and observe Xt(It).
if CD(It, Xt(It)) == 1 then

⌧It = t+ 1; reset CD(It, ·).
end if

end for

Algorithm 2 Two-sided CUSUM

Require: parameters ✏, M , h and {yk}k�1

Initialize g+
0

= 0 and g�
0

= 0.
for each k do

Calculate s�k and s+k according to (6).
Update g+k and g�k according to (7).
if g+k � h or g�k � h then

Return 1
end if

end for

Given such a change detection algorithm, we can employ it
to control the UCB algorithm, which is our CD-UCB policy
as shown in Algorithm 1. We clarify some useful notations
as follows. Let ⌧i = ⌧i(t) be the last time that the CD(i, ·)
alarms and restarts for arm i before time t. Then the num-
ber of valid observations (after the latest detection alarm)
for arm i up to time t is denoted as Nt(i). Let nt be the to-
tal number of valid observations for the decision maker. For
each arm i, let ¯Xt(i) be the sample average and Ct(i) be the
confidence padding term. In particular,

Nt(i) =
tX

s=⌧i

1{Is=i}, nt =

KX

i=1

Nt(i), (3)

¯Xt(i)=
tX

s=⌧i

Xs(i)

Nt(i)
1{Is=i}, Ct(i)=

s
⇠ log nt

Nt(i)
, (4)

where ⇠ is some positive real number. Thus, the UCB index
for each arm i is ¯Xt(i) + Ct(i). Parameter ↵ is a tuning
parameter we introduce in the CD-UCB policy. At each time
t, the policy plays the arm

It =

⇢
argmaxi2K

�
¯Xt(i) + Ct(i)

�
, w.p. 1� ↵

i, 8i 2 K,w.p. ↵
K

. (5)

Parameter ↵ controls the fraction of plays we exploit to
feed the change detection algorithm. A large ↵ may drive
the algorithm to a linear regret performance while a small ↵
can limit the detectability of change detection algorithm. We
will discuss the choice of ↵ in Sections 5 and 6.

4.2 Tailored CUSUM algorithm

A change detection algorithm observes a sequence of inde-
pendent random variables, y

1

, y
2

, . . ., in an online manner,
and outputs an alarm once a change point is detected. In the
context of the traditional change detection problem, one as-
sumes that the parameters ✓

0

and ✓
1

are known for the den-
sity function p(·|✓). In addition, yk is sampled from distri-
bution under ✓

0

(✓
1

) before (after) the breakpoint. Let u
0

(u
1

) be the mean of yk before (after) the change point. The
CUSUM algorithm, originally proposed by (Page 1954), has
been proven to be optimal in detecting abrupt changes in the
sense of worst mean detection delay (Lorden 1971). The ba-
sic idea of the CUSUM algorithm is to take a function of
the observed sample (e.g., the logarithm of likelihood ratio

log

p(yk|✓1)
p(yk|✓0)) as the step of a random walk. This random walk

is designed to have a positive mean drift after a change point
and have a negative mean drift without a change. Hence,
CUSUM signals a change if this random walk crosses some
positive threshold h.

We propose a tailored CUSUM algorithm that works in
the bandit setting. To be specific, we use the first M samples
to calculate the average, û

0

, (

PM
k=1

yk)/M. Then we con-
struct two random walks, which have negative mean drifts
before the change point and have positive mean drifts after
the change. In particular, we design a two-sided CUSUM al-
gorithm, described in Algorithm 2, with an upper (lower)
random walk monitoring the possible positive (negative)
mean shift. Let s+k (s�k) be the step of the upper (lower) ran-
dom walk. Then s+k and s�k are defined as

(s+k , s
�
k) = (yk � û

0

� ✏, û
0

� yk � ✏)1{k>M}. (6)

Let g+k (g�k) track the positive drift of upper (lower) random
walk. In particular,

g+k = max(0, g+k�1

+ s+k), g�k = max(0, g�k�1

+ s�k).

(7)

The change point is detected when either of them crosses the
threshold h. The parameter h is important in the detection
delay and false alarm trade-off. We discuss the choice of h
in Section 5.

4.3 CUSUM-UCB policy

Now we are ready to introduce our CUSUM-UCB policy,
which is a CD-UCB policy with CUSUM as a change de-
tection algorithm. In particular, it takes K parallel CUSUM
algorithms as CD(·, ·) in CD-UCB. Formal description of
CUSUM-UCB can be found in Algorithm 3, provided in our
technical report (Liu, Lee, and Shroff 2017).

We introduce another instance of our CD-UCB with the
PHT algorithm (Hinkley 1971) running as the change de-
tection algorithm, named PHT-UCB. PHT can be viewed as
a variant of Algorithm 2 by replacing (6) with (s+k , s

�
k) =

(yk � ŷk � ✏, ŷk � yk � ✏), where ŷk =

1

k

Pk
s=1

ys.

5 Performance Analysis

In this section, we analyze the performance in each part of
the proposed algorithm: (a) our bandit algorithm (i.e., CD-

Algorithm 1 CD-UCB

Require: T , ↵ and an algorithm CD(·, ·)
Initialize ⌧i = 1, 8i.
for t from 1 to T do

Update according to equations (3-5).
Play arm It and observe Xt(It).
if CD(It, Xt(It)) == 1 then

⌧It = t+ 1; reset CD(It, ·).
end if

end for

Algorithm 2 Two-sided CUSUM

Require: parameters ✏, M , h and {yk}k�1

Initialize g+
0

= 0 and g�
0

= 0.
for each k do

Calculate s�k and s+k according to (6).
Update g+k and g�k according to (7).
if g+k � h or g�k � h then

Return 1
end if

end for

Given such a change detection algorithm, we can employ it
to control the UCB algorithm, which is our CD-UCB policy
as shown in Algorithm 1. We clarify some useful notations
as follows. Let ⌧i = ⌧i(t) be the last time that the CD(i, ·)
alarms and restarts for arm i before time t. Then the num-
ber of valid observations (after the latest detection alarm)
for arm i up to time t is denoted as Nt(i). Let nt be the to-
tal number of valid observations for the decision maker. For
each arm i, let ¯Xt(i) be the sample average and Ct(i) be the
confidence padding term. In particular,

Nt(i) =
tX

s=⌧i

1{Is=i}, nt =

KX

i=1

Nt(i), (3)

¯Xt(i)=
tX

s=⌧i

Xs(i)

Nt(i)
1{Is=i}, Ct(i)=

s
⇠ log nt

Nt(i)
, (4)

where ⇠ is some positive real number. Thus, the UCB index
for each arm i is ¯Xt(i) + Ct(i). Parameter ↵ is a tuning
parameter we introduce in the CD-UCB policy. At each time
t, the policy plays the arm

It =

⇢
argmaxi2K

�
¯Xt(i) + Ct(i)

�
, w.p. 1� ↵

i, 8i 2 K,w.p. ↵
K

. (5)

Parameter ↵ controls the fraction of plays we exploit to
feed the change detection algorithm. A large ↵ may drive
the algorithm to a linear regret performance while a small ↵
can limit the detectability of change detection algorithm. We
will discuss the choice of ↵ in Sections 5 and 6.

4.2 Tailored CUSUM algorithm

A change detection algorithm observes a sequence of inde-
pendent random variables, y

1

, y
2

, . . ., in an online manner,
and outputs an alarm once a change point is detected. In the
context of the traditional change detection problem, one as-
sumes that the parameters ✓

0

and ✓
1

are known for the den-
sity function p(·|✓). In addition, yk is sampled from distri-
bution under ✓

0

(✓
1

) before (after) the breakpoint. Let u
0

(u
1

) be the mean of yk before (after) the change point. The
CUSUM algorithm, originally proposed by (Page 1954), has
been proven to be optimal in detecting abrupt changes in the
sense of worst mean detection delay (Lorden 1971). The ba-
sic idea of the CUSUM algorithm is to take a function of
the observed sample (e.g., the logarithm of likelihood ratio

log

p(yk|✓1)
p(yk|✓0)) as the step of a random walk. This random walk

is designed to have a positive mean drift after a change point
and have a negative mean drift without a change. Hence,
CUSUM signals a change if this random walk crosses some
positive threshold h.

We propose a tailored CUSUM algorithm that works in
the bandit setting. To be specific, we use the first M samples
to calculate the average, û

0

, (

PM
k=1

yk)/M. Then we con-
struct two random walks, which have negative mean drifts
before the change point and have positive mean drifts after
the change. In particular, we design a two-sided CUSUM al-
gorithm, described in Algorithm 2, with an upper (lower)
random walk monitoring the possible positive (negative)
mean shift. Let s+k (s�k) be the step of the upper (lower) ran-
dom walk. Then s+k and s�k are defined as

(s+k , s
�
k) = (yk � û

0

� ✏, û
0

� yk � ✏)1{k>M}. (6)

Let g+k (g�k) track the positive drift of upper (lower) random
walk. In particular,

g+k = max(0, g+k�1

+ s+k), g�k = max(0, g�k�1

+ s�k).

(7)

The change point is detected when either of them crosses the
threshold h. The parameter h is important in the detection
delay and false alarm trade-off. We discuss the choice of h
in Section 5.

4.3 CUSUM-UCB policy

Now we are ready to introduce our CUSUM-UCB policy,
which is a CD-UCB policy with CUSUM as a change de-
tection algorithm. In particular, it takes K parallel CUSUM
algorithms as CD(·, ·) in CD-UCB. Formal description of
CUSUM-UCB can be found in Algorithm 3, provided in our
technical report (Liu, Lee, and Shroff 2017).

We introduce another instance of our CD-UCB with the
PHT algorithm (Hinkley 1971) running as the change de-
tection algorithm, named PHT-UCB. PHT can be viewed as
a variant of Algorithm 2 by replacing (6) with (s+k , s

�
k) =

(yk � ŷk � ✏, ŷk � yk � ✏), where ŷk =

1

k

Pk
s=1

ys.

5 Performance Analysis

In this section, we analyze the performance in each part of
the proposed algorithm: (a) our bandit algorithm (i.e., CD-

Algorithm 1 CD-UCB

Require: T , ↵ and an algorithm CD(·, ·)
Initialize ⌧i = 1, 8i.
for t from 1 to T do

Update according to equations (3-5).
Play arm It and observe Xt(It).
if CD(It, Xt(It)) == 1 then

⌧It = t+ 1; reset CD(It, ·).
end if

end for

Algorithm 2 Two-sided CUSUM

Require: parameters ✏, M , h and {yk}k�1

Initialize g+
0

= 0 and g�
0

= 0.
for each k do

Calculate s�k and s+k according to (6).
Update g+k and g�k according to (7).
if g+k � h or g�k � h then

Return 1
end if

end for

Given such a change detection algorithm, we can employ it
to control the UCB algorithm, which is our CD-UCB policy
as shown in Algorithm 1. We clarify some useful notations
as follows. Let ⌧i = ⌧i(t) be the last time that the CD(i, ·)
alarms and restarts for arm i before time t. Then the num-
ber of valid observations (after the latest detection alarm)
for arm i up to time t is denoted as Nt(i). Let nt be the to-
tal number of valid observations for the decision maker. For
each arm i, let ¯Xt(i) be the sample average and Ct(i) be the
confidence padding term. In particular,

Nt(i) =

tX

s=⌧i

1{Is=i}, nt =

KX

i=1

Nt(i), (3)

¯Xt(i)=

tX

s=⌧i

Xs(i)

Nt(i)
1{Is=i}, Ct(i)=

s
⇠ log nt

Nt(i)
, (4)

where ⇠ is some positive real number. Thus, the UCB index
for each arm i is ¯Xt(i) + Ct(i). Parameter ↵ is a tuning
parameter we introduce in the CD-UCB policy. At each time
t, the policy plays the arm

It =

⇢
argmaxi2K

�
¯Xt(i) + Ct(i)

�
, w.p. 1� ↵

i, 8i 2 K,w.p. ↵
K

. (5)

Parameter ↵ controls the fraction of plays we exploit to
feed the change detection algorithm. A large ↵ may drive
the algorithm to a linear regret performance while a small ↵
can limit the detectability of change detection algorithm. We
will discuss the choice of ↵ in Sections 5 and 6.

4.2 Tailored CUSUM algorithm

A change detection algorithm observes a sequence of inde-
pendent random variables, y

1

, y
2

, . . ., in an online manner,
and outputs an alarm once a change point is detected. In the
context of the traditional change detection problem, one as-
sumes that the parameters ✓

0

and ✓
1

are known for the den-
sity function p(·|✓). In addition, yk is sampled from distri-
bution under ✓

0

(✓
1

) before (after) the breakpoint. Let u
0

(u
1

) be the mean of yk before (after) the change point. The
CUSUM algorithm, originally proposed by (Page 1954), has
been proven to be optimal in detecting abrupt changes in the
sense of worst mean detection delay (Lorden 1971). The ba-
sic idea of the CUSUM algorithm is to take a function of
the observed sample (e.g., the logarithm of likelihood ratio

log

p(yk|✓1)
p(yk|✓0)) as the step of a random walk. This random walk

is designed to have a positive mean drift after a change point
and have a negative mean drift without a change. Hence,
CUSUM signals a change if this random walk crosses some
positive threshold h.

We propose a tailored CUSUM algorithm that works in
the bandit setting. To be specific, we use the first M samples
to calculate the average, û

0

, (

PM
k=1

yk)/M. Then we con-
struct two random walks, which have negative mean drifts
before the change point and have positive mean drifts after
the change. In particular, we design a two-sided CUSUM al-
gorithm, described in Algorithm 2, with an upper (lower)
random walk monitoring the possible positive (negative)
mean shift. Let s+k (s�k) be the step of the upper (lower) ran-
dom walk. Then s+k and s�k are defined as

(s+k , s
�
k) = (yk � û

0

� ✏, û
0

� yk � ✏)1{k>M}. (6)

Let g+k (g�k) track the positive drift of upper (lower) random
walk. In particular,

g+k = max(0, g+k�1

+ s+k), g�k = max(0, g�k�1

+ s�k).

(7)

The change point is detected when either of them crosses the
threshold h. The parameter h is important in the detection
delay and false alarm trade-off. We discuss the choice of h
in Section 5.

4.3 CUSUM-UCB policy

Now we are ready to introduce our CUSUM-UCB policy,
which is a CD-UCB policy with CUSUM as a change de-
tection algorithm. In particular, it takes K parallel CUSUM
algorithms as CD(·, ·) in CD-UCB. Formal description of
CUSUM-UCB can be found in Algorithm 3, provided in our
technical report (Liu, Lee, and Shroff 2017).

We introduce another instance of our CD-UCB with the
PHT algorithm (Hinkley 1971) running as the change de-
tection algorithm, named PHT-UCB. PHT can be viewed as
a variant of Algorithm 2 by replacing (6) with (s+k , s

�
k) =

(yk � ŷk � ✏, ŷk � yk � ✏), where ŷk =

1

k

Pk
s=1

ys.

5 Performance Analysis

In this section, we analyze the performance in each part of
the proposed algorithm: (a) our bandit algorithm (i.e., CD-

Algorithm 1 CD-UCB

Require: T , ↵ and an algorithm CD(·, ·)
Initialize ⌧i = 1, 8i.
for t from 1 to T do

Update according to equations (3-5).
Play arm It and observe Xt(It).
if CD(It, Xt(It)) == 1 then

⌧It = t+ 1; reset CD(It, ·).
end if

end for

Algorithm 2 Two-sided CUSUM

Require: parameters ✏, M , h and {yk}k�1

Initialize g+
0

= 0 and g�
0

= 0.
for each k do

Calculate s�k and s+k according to (6).
Update g+k and g�k according to (7).
if g+k � h or g�k � h then

Return 1
end if

end for

Given such a change detection algorithm, we can employ it
to control the UCB algorithm, which is our CD-UCB policy
as shown in Algorithm 1. We clarify some useful notations
as follows. Let ⌧i = ⌧i(t) be the last time that the CD(i, ·)
alarms and restarts for arm i before time t. Then the num-
ber of valid observations (after the latest detection alarm)
for arm i up to time t is denoted as Nt(i). Let nt be the to-
tal number of valid observations for the decision maker. For
each arm i, let ¯Xt(i) be the sample average and Ct(i) be the
confidence padding term. In particular,

Nt(i) =
tX

s=⌧i

1{Is=i}, nt =

KX

i=1

Nt(i), (3)

¯Xt(i)=
tX

s=⌧i

Xs(i)

Nt(i)
1{Is=i}, Ct(i)=

s
⇠ log nt

Nt(i)
, (4)

where ⇠ is some positive real number. Thus, the UCB index
for each arm i is ¯Xt(i) + Ct(i). Parameter ↵ is a tuning
parameter we introduce in the CD-UCB policy. At each time
t, the policy plays the arm

It =

⇢
argmaxi2K

�
¯Xt(i) + Ct(i)

�
, w.p. 1� ↵

i, 8i 2 K,w.p. ↵
K

. (5)

Parameter ↵ controls the fraction of plays we exploit to
feed the change detection algorithm. A large ↵ may drive
the algorithm to a linear regret performance while a small ↵
can limit the detectability of change detection algorithm. We
will discuss the choice of ↵ in Sections 5 and 6.

4.2 Tailored CUSUM algorithm

A change detection algorithm observes a sequence of inde-
pendent random variables, y

1

, y
2

, . . ., in an online manner,
and outputs an alarm once a change point is detected. In the
context of the traditional change detection problem, one as-
sumes that the parameters ✓

0

and ✓
1

are known for the den-
sity function p(·|✓). In addition, yk is sampled from distri-
bution under ✓

0

(✓
1

) before (after) the breakpoint. Let u
0

(u
1

) be the mean of yk before (after) the change point. The
CUSUM algorithm, originally proposed by (Page 1954), has
been proven to be optimal in detecting abrupt changes in the
sense of worst mean detection delay (Lorden 1971). The ba-
sic idea of the CUSUM algorithm is to take a function of
the observed sample (e.g., the logarithm of likelihood ratio

log

p(yk|✓1)
p(yk|✓0)) as the step of a random walk. This random walk

is designed to have a positive mean drift after a change point
and have a negative mean drift without a change. Hence,
CUSUM signals a change if this random walk crosses some
positive threshold h.

We propose a tailored CUSUM algorithm that works in
the bandit setting. To be specific, we use the first M samples
to calculate the average, û

0

, (

PM
k=1

yk)/M. Then we con-
struct two random walks, which have negative mean drifts
before the change point and have positive mean drifts after
the change. In particular, we design a two-sided CUSUM al-
gorithm, described in Algorithm 2, with an upper (lower)
random walk monitoring the possible positive (negative)
mean shift. Let s+k (s�k) be the step of the upper (lower) ran-
dom walk. Then s+k and s�k are defined as

(s+k , s
�
k) = (yk � û

0

� ✏, û
0

� yk � ✏)1{k>M}. (6)

Let g+k (g�k) track the positive drift of upper (lower) random
walk. In particular,

g+k = max(0, g+k�1

+ s+k), g�k = max(0, g�k�1

+ s�k).

(7)

The change point is detected when either of them crosses the
threshold h. The parameter h is important in the detection
delay and false alarm trade-off. We discuss the choice of h
in Section 5.

4.3 CUSUM-UCB policy

Now we are ready to introduce our CUSUM-UCB policy,
which is a CD-UCB policy with CUSUM as a change de-
tection algorithm. In particular, it takes K parallel CUSUM
algorithms as CD(·, ·) in CD-UCB. Formal description of
CUSUM-UCB can be found in Algorithm 3, provided in our
technical report (Liu, Lee, and Shroff 2017).

We introduce another instance of our CD-UCB with the
PHT algorithm (Hinkley 1971) running as the change de-
tection algorithm, named PHT-UCB. PHT can be viewed as
a variant of Algorithm 2 by replacing (6) with (s+k , s

�
k) =

(yk � ŷk � ✏, ŷk � yk � ✏), where ŷk =

1

k

Pk
s=1

ys.

5 Performance Analysis

In this section, we analyze the performance in each part of
the proposed algorithm: (a) our bandit algorithm (i.e., CD-

We propose change-detection based upper
confidence bounds (CD-UCB).
• The change detection algorithm controls the

restarting of UCB index;
• Mix the UCB decision with uniform

sampling to feed CD algorithm.
We propose a tailored CUSUM algorithm for
bandit problems.

Parameter ↵ controls the fraction of plays we exploit to feed the change detection algorithm. A large165

↵ may drive the algorithm to a linear regret performance while a small ↵ can limit the detectability of166

change detection algorithm. We will discuss the choice of ↵ in Sections 5 and 6.167

Tailored CUSUM algorithm. A change detection algorithm observes a sequence of independent168

random variables, y
1

, y
2

, . . ., in an online manner, and outputs an alarm once a change point is169

detected. In the context of the traditional change detection problem, one assumes that the parameters170

✓
0

and ✓
1

are known for the density function p(·|✓). In addition, yk is sampled from distribution171

under ✓
0

(✓
1

) before (after) the breakpoint. Let u
0

(u
1

) be the mean of yk before (after) the change172

point. The CUSUM algorithm, originally proposed by [23], has been proven to be optimal in173

detecting abrupt changes in the sense of worst mean detection delay [24]. The basic idea of the174

CUSUM algorithm is to take a function of the observed sample (e.g., the logarithm of likelihood ratio175

log

p(yk|✓1)
p(yk|✓0)) as the step of a random walk. This random walk is designed to have a positive mean176

drift after a change point and have a negative mean drift without a change. Hence, CUSUM signals a177

change if this random walk crosses some positive threshold h.178

We propose a tailored CUSUM algorithm that works in the bandit setting. To be specific, we use179

the first M samples to calculate the average, û
0

, (

PM
k=1

yk)/M. Then we construct two random180

walks, which have negative mean drifts before the change point and have positive mean drifts after181

the change. In particular, we design a two-sided CUSUM algorithm, described in Algorithm 2, with182

an upper (lower) random walk monitoring the possible positive (negative) mean shift. Let s+k (s�k) be183

the step of the upper (lower) random walk. Then s+k and s�k are defined as184

(s+k , s
�
k) = (yk � û

0

� ✏, û
0

� yk � ✏) {k>M}. (4)

Let g+k (g�k) track the positive drift of upper (lower) random walk. In particular,185

g+k = max(0, g+k�1

+ s+k), g�k = max(0, g�k�1

+ s�k). (5)

The change point is detected when either of them crosses the threshold h. The parameter h is186

important in the detection delay and false alarm trade-off. We discuss the choice of h in Section 5.187

CUSUM-UCB policy. Now we are ready to introduce our CUSUM-UCB policy, which is a CD-UCB188

policy with CUSUM as a change detection algorithm. In particular, it takes K parallel CUSUM189

algorithms as CD(·, ·) in CD-UCB. Formal description of CUSUM-UCB can be found in Algorithm 3,190

provided in Section F in the supplementary material.191

PHT-UCB policy. We introduce another instance of our CD-UCB with the PHT algorithm [19]192

running as the change detection algorithm, named PHT-UCB. PHT can be viewed as a variant of193

Algorithm 2 by replacing (4) with (s+k , s
�
k) = (yk � ŷk � ✏, ŷk � yk � ✏), where ŷk =

1

k

Pk
s=1

ys.194

5 Performance Analysis195

In this section, we analyze the performance in each part of the proposed algorithm: (a) our bandit196

algorithm (i.e., CD-UCB), and (b) our change detection algorithm (i.e., two-sided CUSUM). First, we197

present the regret upper bound result of CD-UCB for a given change detection guarantee. This is of198

independent interest in understanding the challenges of the non-stationary environment. Second, we199

provide performance guarantees of our modified CUSUM algorithm in terms of the mean detection200

delay, E[D], and the expected number of false alarms up to time T , E[F]. Then, we combine these201

two results to provide the regret upper bound of our CUSUM-UCB. The proofs are presented in our202

supplementary material.203

Theorem 1. (CD-UCB) Let ⇠ = 1. Under Assumption 1, for any ↵ 2 [0, 1) and any arm i 2204

{1, . . . ,K}, the CD-UCB policy achieves,205

E[˜NT (i)]  (�T + E[F]) ·
✓

4 log T

(�µT (i))
2

+

⇡2

3

◆
+

⇡2

3

+ �T · E[D] +

↵T

K
.

Recall that the regret of the CD-UCB policy is upper-bounded by
PK

i=1

E[˜NT (i)]. Therefore, given206

the parameter values (e.g., ↵) and the performance of a change detection algorithm (i.e., E[F] and207

E[D]), we can obtain the regret upper bound of that change detection based bandit algorithm. By208

letting ↵ = 0, we obtain the following result.209

5

Table 1: Comparison of regret bounds in various algorithms.

Passively adaptive Actively adaptive
Algorithm D-UCB [16] SW-UCB [10] Rexp3 [11] Exp3.S [17] CUSUM-UCB Exp3.R[15]

Regret O(

p
T�T log T) O(

p
T�T log T) O(V

1/3
T T 2/3

) O(

p
T�T log T) O(

q
T�T log

T
�T

) O(�T
p
T log T)

Corollary 1. (CD-UCB|↵ = 0) If ↵ = 0 and ⇠ = 1, then the regret of CD-UCB is210

R⇡CD-UCB
(T) = O((�T + E[F]) · log T + �T · E[D])). (7)

Remark 1. If one can find an oracle algorithm that detects the change point with the properties that211

E[F]  O(�T) and E[D]  O(log T), then one can achieve O(�T log T) regret, which recovers the212

regret result in [20]. We note that the WMD (Windowed Mean-shift Detection) change detection213

algorithm proposed in [20] achieves these properties when side observations are available.214

In the next proposition, we introduce the result of Algorithm 2 about the conditional expected detection215

delay and the conditional expected number of false alarms given û
0

. Note that the expectations216

exclude the first M slots for initial observations.217

Proposition 1. (CUSUM|û
0

) Recall that h is the tuning parameter in Algorithm 2. Under Assump-218

tions 1 and 2, the conditional expected detection delay E [D||û
0

� u
0

| < ✏] and the conditional219

expected number of false alarms E [F ||û
0

� u
0

| < ✏] satisfy220

E [D||û
0

� u
0

| < ✏]  h+ 1

|u
1

� û
0

|� ✏
, E [F ||û

0

� u
0

| < ✏]  2T

exp(r(✓
0

)h)
, (8)

where r(✓
0

) = min(r�(✓
0

), r+(✓
0

)), r�(✓
0

) is the non-zero root of logE✓0 [e
rs�M+1

] and r+(✓
0

) is221

the non-zero root of logE✓0 [e
rs+M+1

]. In the case of |û
0

� u
0

| > ✏, the algorithm restarts in at most222
h+1

|û0�u0|�✏ time slots.223

In the next theorem, we show the result for E[D] and E[F] when CUSUM is used to detect the abrupt224

change. Note again that the expectations exclude the first M time slots.225

Theorem 2. (CUSUM) Under Assumptions 1, 2 and 3, the expected detection delay E[D] and the226

expected number of false alarms E[F] of the Algorithm 2 satisfy227

E[D]  C
2

(h+ 1), E[F]  2T

(1� 2 exp(�2✏2M)) exp(C
1

h)
, (9)

where C
2

, log(3) + 2 exp(�2✏2M)/�, C�
1

, log

⇣
4✏

(1�✏)2

�
M

b2✏Mc
�
(2✏)M + 1

⌘
, C+

1

,228

log

⇣
4✏

(1+✏)2

�
M

d2✏Me
�
(2✏)M + 1

⌘
and C

1

, min(C�
1

, C+

1

).229

Summing the result of Theorems 1 and 2, we obtain the regret upper bound of the CUSUM-UCB230

policy. To the best of our knowledge, this is the first regret bound for an actively adaptive UCB policy231

in the bandit feedback setting.232

Theorem 3. (CUSUM-UCB) Let ⇠ = 1. Under Assumptions 1, 2 and 3, for any ↵ 2 (0, 1) and any233

arm i 2 {1, . . . ,K}, the CUSUM-UCB policy achieves,234

E[˜NT (i)]  R
1

·R
2

+

⇡2

3

+

↵T

K
, (10)

235

for R
1

= �T +

2T

(1� 2 exp(�2✏2M)) exp(C
1

h)
, R

2

=

4 log T

(�µT (i))
2

+

⇡2

3

+M +

C
2

(h+ 1)K

↵
.

Corollary 2. Under the Assumptions 1, 2 and 3, if horizon T and the number of breakpoints �T are236

known in advance, then we can choose h =

1

C1
log

T
�T

and ↵ = K
q

C2�T

C1T
log

T
�T

so that237

R⇡CUSUM-UCB
(T) = O

�T log T

(�µT (i))
2

+

s

T�T log

T

�T

!
. (11)

6

Table 1: Comparison of regret bounds in various algorithms.

Passively adaptive Actively adaptive
Algorithm D-UCB [16] SW-UCB [10] Rexp3 [11] Exp3.S [17] CUSUM-UCB Exp3.R[15]

Regret O(

p
T�T log T) O(

p
T�T log T) O(V

1/3
T T 2/3

) O(

p
T�T log T) O(

q
T�T log

T
�T

) O(�T
p
T log T)

Corollary 1. (CD-UCB|↵ = 0) If ↵ = 0 and ⇠ = 1, then the regret of CD-UCB is210

R⇡CD-UCB
(T) = O((�T + E[F]) · log T + �T · E[D])). (7)

Remark 1. If one can find an oracle algorithm that detects the change point with the properties that211

E[F]  O(�T) and E[D]  O(log T), then one can achieve O(�T log T) regret, which recovers the212

regret result in [20]. We note that the WMD (Windowed Mean-shift Detection) change detection213

algorithm proposed in [20] achieves these properties when side observations are available.214

In the next proposition, we introduce the result of Algorithm 2 about the conditional expected detection215

delay and the conditional expected number of false alarms given û
0

. Note that the expectations216

exclude the first M slots for initial observations.217

Proposition 1. (CUSUM|û
0

) Recall that h is the tuning parameter in Algorithm 2. Under Assump-218

tions 1 and 2, the conditional expected detection delay E [D||û
0

� u
0

| < ✏] and the conditional219

expected number of false alarms E [F ||û
0

� u
0

| < ✏] satisfy220

E [D||û
0

� u
0

| < ✏]  h+ 1

|u
1

� û
0

|� ✏
, E [F ||û

0

� u
0

| < ✏]  2T

exp(r(✓
0

)h)
, (8)

where r(✓
0

) = min(r�(✓
0

), r+(✓
0

)), r�(✓
0

) is the non-zero root of logE✓0 [e
rs�M+1

] and r+(✓
0

) is221

the non-zero root of logE✓0 [e
rs+M+1

]. In the case of |û
0

� u
0

| > ✏, the algorithm restarts in at most222
h+1

|û0�u0|�✏ time slots.223

In the next theorem, we show the result for E[D] and E[F] when CUSUM is used to detect the abrupt224

change. Note again that the expectations exclude the first M time slots.225

Theorem 2. (CUSUM) Under Assumptions 1, 2 and 3, the expected detection delay E[D] and the226

expected number of false alarms E[F] of the Algorithm 2 satisfy227

E[D]  C
2

(h+ 1), E[F]  2T

(1� 2 exp(�2✏2M)) exp(C
1

h)
, (9)

where C
2

, log(3) + 2 exp(�2✏2M)/�, C�
1

, log

⇣
4✏

(1�✏)2

�
M

b2✏Mc
�
(2✏)M + 1

⌘
, C+

1

,228

log

⇣
4✏

(1+✏)2

�
M

d2✏Me
�
(2✏)M + 1

⌘
and C

1

, min(C�
1

, C+

1

).229

Summing the result of Theorems 1 and 2, we obtain the regret upper bound of the CUSUM-UCB230

policy. To the best of our knowledge, this is the first regret bound for an actively adaptive UCB policy231

in the bandit feedback setting.232

Theorem 3. (CUSUM-UCB) Let ⇠ = 1. Under Assumptions 1, 2 and 3, for any ↵ 2 (0, 1) and any233

arm i 2 {1, . . . ,K}, the CUSUM-UCB policy achieves,234

E[˜NT (i)]  R
1

·R
2

+

⇡2

3

+

↵T

K
,

235

for R
1

= �T +

2T

(1� 2 exp(�2✏2M)) exp(C
1

h)
, R

2

=

4 log T

(�µT (i))
2

+

⇡2

3

+M +

C
2

(h+ 1)K

↵
.

Corollary 2. Under the Assumptions 1, 2 and 3, if horizon T and the number of breakpoints �T are236

known in advance, then we can choose h =

1

C1
log

T
�T

and ↵ = K
q

C2�T

C1T
log

T
�T

so that237

R⇡CUSUM-UCB
(T) = O

�T log T

(�µT (i))
2

+

s

T�T log

T

�T

!
.

6

Table 1: Comparison of regret bounds in various algorithms.

Passively adaptive Actively adaptive

Policy D-UCB SW-UCB Rexp3 Adapt-EvE CUSUM-UCB lower bound
(Kocsis and Szepesvári 2006) (Garivier and Moulines 2008) (Besbes, Gur, and Zeevi 2014) (Hartland et al. 2007) (Garivier and Moulines 2008)

Regret O(

p
T�T log T) O(

p
T�T log T) O(V

1/3
T T 2/3

) Unknown O(

q
T�T log

T
�T

) ⌦(

p
T)

Table 1 summarizes the regret upper bounds of the ex-
isting and proposed algorithms in the non-stationary setting
when �µT (i) is a constant in T . Our policy has a smaller
regret term with respect to �T compared to SW-UCB.

6 Simulation Results

We evaluate the existing and proposed policies in three non-
stationary environments: two synthetic dataset (flipping and
switching scenarios) and one real-world dataset from Ya-
hoo! (Yahoo!). Yahoo! dataset collected user click traces
for news articles. Our PHT-UCB is similar to Adapt-EvE,
but they are different in that Adapt-EvE ignores the issue
of insufficient samples and includes other heuristic methods
dealing with the detection points.

In the simulation, the parameters h and ↵ are tuned around
h = log(T/�T) and ↵ =

p�T

T log(T/�T) based on the flip-
ping environment. We suggest the practitioners to take the
same approach because the choices of h and ↵ in Corollary
2 are minimizing the regret upper bound rather than the re-
gret. We use the same parameters h and ↵ for CUSUM-UCB
and PHT-UCB to compare the performances of CUSUM and
PHT. Parameters are listed in Table 2. Note that ✏ and M are
obtained based on the prior knowledge of the datasets. The
baseline algorithms are tuned similarly with the knowledge
of �T and T . We take the average regret over 1000 trials for
the synthetic dataset.

6.1 Synthetic Datasets

Flipping Environment. We consider two arms (i.e., K = 2)
in the flipping environment, where arm 1 is stationary and
the expected reward of arm 2 flips between two values. All
arms are associated with Bernoulli distributions. In particu-
lar, µt(1) = 0.5 for any t  T and

µt(2) =

⇢
0.5��, T

3

 t  2T
3

0.8, otherwise
. (16)

The two change points are at T
3

and 2T
3

. Note that � is
equivalent to �µT (2)

. We let � vary within the interval
[0.02, 0.3], and compare the regrets of D-UCB, SW-UCB
and CUSUM-UCB to verify Remark 4. For this reason, re-
sults of other algorithms are omitted. As shown in Figure 2a,
CUSUM-UCB outperforms D-UCB and SW-UCB. In ad-
dition, the gap between CUSUM-UCB and SW-UCB in-
creases as � decreases.

Switching Environment. We consider the switching en-
vironment, introduced by Mellor and Shapiro (2013), which
is defined by a hazard function, �(t), such that,

µt(i) =

⇢
µt�1

(i), with probability 1� �(t)

µ ⇠ U [0, 1], with probability �(t)
. (17)

(a) Under the flipping environment

(b) Under the switching environment

Figure 2: Regret over synthetic datasets

Note that U [0, 1] denotes the uniform distribution over
the interval [0, 1] and µ

0

(i) are independent samples from
U [0, 1]. In the experiments, we use the constant hazard func-
tion �(t) = �T /T . All the arms are associated with a
Bernoulli distribution.

The regrets over the time horizon are shown in Figure 2b.
Although Assumptions 1 and 2 are violated, CUSUM-UCB
and PHT-UCB outperform the other policies. To find the
polynomial order of the regret, we use the non-linear least
squares method to fit the curves to the model atb + c.
The resulting exponents b of Exp3.R, D-UCB, Rexp3, SW-
UCB, Exp3.S, CUSUM-UCB and PHT-UCB are 0.92, 0.89,
0.85, 0.84, 0.83, 0.72 and 0.69, respectively. The regret of
CUSUM-UCB and PHT-UCB shows the better sublinear
function of time compared to the other policies. Another ob-
servation is that PHT-UCB performs better than CUSUM-
UCB, although we could not find a regret upper bound for
PHT-UCB. The reason behind is that the PHT test is more

Parameter ∆
0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

g
re

t

×104

0

0.5

1

1.5

2

2.5

D-UCB
SW-UCB
CUSUM-UCB

Time ×105
0 2 4 6 8 10

R
e

g
re

t

×105

0

0.5

1

1.5

2

2.5

3

3.5

Exp3.R
D-UCB
Rexp3
SW-UCB
Exp3.S
CUSUM-UCB
PHT-UCB

Time ×105
0 1 2 3 4 5

A
ve

ra
g

e
 r

e
w

a
rd

s
o

f
a

rm
s

0.01

0.02

0.03

0.04

0.05

0.06

0.07

arm 1 2 3 4 5

Time ×105
0 1 2 3 4 5

R
e

g
re

t

0

500

1000

1500

2000

2500

3000

3500

4000

D-UCB
Rexp3
SW-UCB
Exp3.R
Exp3.S
CUSUM-UCB
PHT-UCB

Flipping environment Switching environment

Yahoo! ground truth Yahoo! regret result

Experiment 1: Flipping environment. 2 Bernoulli arms with µt(1)=0.5,

Experiment 2: Switching environment.

Experiment 3: Yahoo! Front Page dataset.

(a) Under the flipping environment (b) Under the switching environment
Figure 2: Regret over synthetic datasets

Remark 2. As shown in [10], the lower bound of the problem is ⌦(
p
T). Our policy approaches the238

optimal regret rate in an order sense.239

Remark 3. For the SW-UCB policy, the regret analysis result is R⇡SW-UCB
(T) = O

⇣p
T�T log T

(�µT (i))
2

⌘
[10].240

If �µT (i) is a constant with respect to T , then
p
T�T log T term dominates and our policy achieves241

the same regret rate as SW-UCB. If �µT (i) goes to 0 as T increases, then the regret of CUSUM-UCB242

grows much slower than SW-UCB.243

Table 1 summarizes the regret upper bounds of the existing and proposed algorithms in the non-244

stationary setting when �µT (i) is a constant in T . Our policy has a smaller regret term with respect245

to �T compared to SW-UCB.246

6 Simulation Results247

We evaluate the existing and proposed policies in three non-stationary environments: two synthetic248

data (flipping and switching scenarios) and one real-world data from Yahoo! [25]. Yahoo! dataset249

collected user click traces for news articles. As reported in [14], we were unable to reproduce the250

results of Adapt-EvE in [13] that exploits the PHT test, due to the lack of algorithm description. Our251

PHT-UCB is similar to Adapt-EvE, but they are different in that Adapt-EvE ignores the issue of252

insufficient samples and includes other heuristic methods dealing with the detection points.253

In the simulation, the parameters h and ↵ are tuned around h = log(T/�T) and ↵ =

p
�T

T log(T/�T)254

based on the flipping environment. We use the same parameters h and ↵ for CUSUM-UCB and255

PHT-UCB to compare the performances of CUSUM and PHT. Parameters are listed in Section G in256

the appendix. We take the average regret over 1000 trials for the synthetic data.257

Flipping Environment. We consider two arms (i.e., K = 2) in the flipping environment, where arm258

1 is stationary and the expected reward of arm 2 flips between two values. All arms are associated259

with Bernoulli distributions. In particular, µt(1) = 0.5 for any t  T and260

µt(2) =

⇢
0.5��, T

3

 t  2T
3

0.8, otherwise
. (12)

The two change points are at T
3

and 2T
3

. Note that � is equivalent to �µT (2)

. We let � vary261

within the interval [0.02, 0.3], and compare the regrets of D-UCB, SW-UCB and CUSUM-UCB to262

verify Remark 3. For this reason, results of other algorithms are omitted. As shown in Figure 2a,263

CUSUM-UCB outperforms D-UCB and SW-UCB. In addition, the gap between CUSUM-UCB and264

SW-UCB increases as � decreases.265

Switching Environment. We consider the switching environment, introduced by [14], which is266

defined by a hazard function, �(t), such that,267

µt(i) =

⇢
µt�1

(i), with probability 1� �(t)
µ ⇠ U [0, 1], with probability �(t)

. (13)

Note that U [0, 1] denotes the uniform distribution over the interval [0, 1]. In the experiments, we use268

the constant hazard function �(t) = �T /T . All the arms are associated with a Bernoulli distribution.269

7

(a) Under the flipping environment (b) Under the switching environment
Figure 2: Regret over synthetic datasets

Remark 2. As shown in [10], the lower bound of the problem is ⌦(
p
T). Our policy approaches the238

optimal regret rate in an order sense.239

Remark 3. For the SW-UCB policy, the regret analysis result is R⇡SW-UCB
(T) = O

⇣p
T�T log T

(�µT (i))
2

⌘
[10].240

If �µT (i) is a constant with respect to T , then
p
T�T log T term dominates and our policy achieves241

the same regret rate as SW-UCB. If �µT (i) goes to 0 as T increases, then the regret of CUSUM-UCB242

grows much slower than SW-UCB.243

Table 1 summarizes the regret upper bounds of the existing and proposed algorithms in the non-244

stationary setting when �µT (i) is a constant in T . Our policy has a smaller regret term with respect245

to �T compared to SW-UCB.246

6 Simulation Results247

We evaluate the existing and proposed policies in three non-stationary environments: two synthetic248

data (flipping and switching scenarios) and one real-world data from Yahoo! [25]. Yahoo! dataset249

collected user click traces for news articles. As reported in [14], we were unable to reproduce the250

results of Adapt-EvE in [13] that exploits the PHT test, due to the lack of algorithm description. Our251

PHT-UCB is similar to Adapt-EvE, but they are different in that Adapt-EvE ignores the issue of252

insufficient samples and includes other heuristic methods dealing with the detection points.253

In the simulation, the parameters h and ↵ are tuned around h = log(T/�T) and ↵ =

p
�T

T log(T/�T)254

based on the flipping environment. We use the same parameters h and ↵ for CUSUM-UCB and255

PHT-UCB to compare the performances of CUSUM and PHT. Parameters are listed in Section G in256

the appendix. We take the average regret over 1000 trials for the synthetic data.257

Flipping Environment. We consider two arms (i.e., K = 2) in the flipping environment, where arm258

1 is stationary and the expected reward of arm 2 flips between two values. All arms are associated259

with Bernoulli distributions. In particular, µt(1) = 0.5 for any t  T and260

µt(2) =

⇢
0.5��, T

3

 t  2T
3

0.8, otherwise
. (12)

The two change points are at T
3

and 2T
3

. Note that � is equivalent to �µT (2)

. We let � vary261

within the interval [0.02, 0.3], and compare the regrets of D-UCB, SW-UCB and CUSUM-UCB to262

verify Remark 3. For this reason, results of other algorithms are omitted. As shown in Figure 2a,263

CUSUM-UCB outperforms D-UCB and SW-UCB. In addition, the gap between CUSUM-UCB and264

SW-UCB increases as � decreases.265

Switching Environment. We consider the switching environment, introduced by [14], which is266

defined by a hazard function, �(t), such that,267

µt(i) =

⇢
µt�1

(i), with probability 1� �(t)
µ ⇠ U [0, 1], with probability �(t)

. (13)

Note that U [0, 1] denotes the uniform distribution over the interval [0, 1]. In the experiments, we use268

the constant hazard function �(t) = �T /T . All the arms are associated with a Bernoulli distribution.269

7

Statistics

Reward=
of clicks

Ad selection

Users click with
unknown prob.

Classical bandits:
• Slot machine;
• Unknown rewards;
• Stationary;
• O(logT) regret.
However, in real world
problems, non-stationary
• User preference drift;
• Big event;
• Aging.
Existing methods:
• Passively adaptive policies - D-UCB, SW-UCB, Rexp3- with guarantee
• Actively adaptive policies - AdaptEvE, CTS - without guarantee

Bandit
algorithm

Change
detection
algorithm

Non-stationary
bandit

environment

“alarms” to restart

arm
It

reward
Xt(It)

